The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics.
Fibrations are used, for example, in Postnikov systems or obstruction theory.
In this article, all mappings are continuous mappings between topological spaces.
A mapping
p\colonE\toB
X
h\colonX x [0,1]\toB
\tildeh0\colonX\toE
h|X=h0
h0=p\circ\tildeh0
there exists a (not necessarily unique) homotopy
\tildeh\colonX x [0,1]\toE
h
h=p\circ\tildeh
\tildeh0=\tildeh|X.
The following commutative diagram shows the situation:
A fibration (also called Hurewicz fibration) is a mapping
p\colonE\toB
X.
B
E
b\inB
Fb=p-1(b)\subseteqE.
A Serre fibration (also called weak fibration) is a mapping
p\colonE\toB
Every Hurewicz fibration is a Serre fibration.
A mapping
p\colonE\toB
b\inB,
e\inp-1(b)
i\geq0
p*\colon\pii(E,p-1(b),e)\to\pii(B,b)
Every Serre fibration is a quasifibration.
p\colonB x F\toB
p\colonE\toB
h\colonX x [0,1]\toB
\tildeh0\colonX\toE
\tildeh\colonX x [0,1]\toE
p\circ\tildeh=h.
p\colonE\toB
i*\colon
Ik | |
X |
\to
\partialIk | |
X |
i\colon\partialIk\toIk
k\in\N,
X
XA=\{f\colonA\toX\}
S1\toS3\toS2
A mapping
f\colonE1\toE2
p1\colonE1\toB
p2\colonE2\toB
f
g\colonE2\toE1
f\circg
g\circf
\operatorname{Id} | |
E2 |
\operatorname{Id} | |
E1 |
.
Given a fibration
p\colonE\toB
f\colonA\toB
pf\colonf*(E)\toA
f*(E)=\{(a,e)\inA x E|f(a)=p(e)\}
f*(E)
A
E
pf
With the pathspace construction, any continuous mapping can be extended to a fibration by enlarging its domain to a homotopy equivalent space. This fibration is called pathspace fibration.
The total space
Ef
f\colonA\toB
(a,\gamma)
a\inA
\gamma\colonI\toB
\gamma(0)=f(a),
I=[0,1]
Ef=\{(a,\gamma)\inA x BI|\gamma(0)=f(a)\}
A x BI,
BI
I\toB
The pathspace fibration is given by the mapping
p\colonEf\toB
p(a,\gamma)=\gamma(1).
Ff
f
(a,\gamma)
a\inA
\gamma\colon[0,1]\toB,
\gamma(0)=f(a)
\gamma(1)=b0\inB
For the special case of the inclusion of the base point
i\colonb0\toB
Ei
B
b0.
PB
p\colonPB\toB
p-1(b0)
\OmegaB
p-1(b)
b\inB
B.
f\colon[0,1] x A\toB
* | |
f | |
0(E) |
\toA
* | |
f | |
1(E) |
\toA
B
p\colonE\toB
B x F\toB.
p\colonE\toB
E\hookrightarrowEp
p\colonE\toB
F
F\to\OmegaB.
For a fibration
p\colonE\toB
F
b0\inB
F\hookrightarrowFp
i\colonFp\toE
i(e,\gamma)=e
e\inE
\gamma\colonI\toB
p(e)
b0
PB\toB
p
i
The fiber of… \toFj\toFi\xrightarrow{j}Fp\xrightarrowiE\xrightarrowpB.
i
e0\inp-1(b0)
(e0,\gamma)
\gamma
p(e0)=b0
b0
\OmegaB
\OmegaB\hookrightarrowFi
i
i
Due to the duality of fibration and cofibration, there also exists a sequence of cofibrations. These two sequences are known as the Puppe sequences or the sequences of fibrations and cofibrations.… \Omega2B\to\OmegaF\to\OmegaE\to\OmegaB\toF\toE\toB.
A fibration
p\colonE\toB
F
For a Serre fibration
p\colonE\toB
b0\inB
x0\inF=p-1(b0)
The homomorphisms… → \pin(F,x0) → \pin(E,x0) → \pin(B,b0) → \pin(F,x0) →
… → \pi0(F,x0) → \pi0(E,x0).
\pin(F,x0) → \pin(E,x0)
\pin(E,x0) → \pin(B,b0)
i\colonF\hookrightarrowE
p\colonE → B.
Hopf fibrations are a family of fiber bundles whose fiber, total space and base space are spheres:
The long exact sequence of homotopy groups of the hopf fibrationS0\hookrightarrowS1 → S1,
S1\hookrightarrowS3 → S2,
S3\hookrightarrowS7 → S4,
S7\hookrightarrowS15 → S8.
S1\hookrightarrowS3 → S2
This sequence splits into short exact sequences, as the fiber… →
1,x \pi 0) →
3, \pi n(S x0) →
2, \pi n(S b0) → \pin(S1,x0) →
… →
1, \pi 1(S x0) →
3, \pi 1(S x0) →
2, \pi 1(S b0).
S1
S3
This short exact sequence splits because of the suspension homomorphism0 →
3) \pi i(S →
2) \pi i(S → \pii-1(S1) → 0.
\phi\colon\pii(S1)\to
2) | |
\pi | |
i(S |
The homotopy groups
2) \pi i(S \cong
3) \pi i(S ⊕ \pii(S1).
\pii(S1)
i\geq3,
2) | |
\pi | |
i(S |
3) | |
\pi | |
i(S |
i\geq3.
Analog the fibers
S3
S7
S7
S15
and
4) \pi i(S \cong
7) \pi i(S ⊕ \pii(S3)
8) \pi i(S \cong
15 \pi i(S ) ⊕ \pii(S7).
Spectral sequences are important tools in algebraic topology for computing (co-)homology groups.
The Leray-Serre spectral sequence connects the (co-)homology of the total space and the fiber with the (co-)homology of the base space of a fibration. For a fibration
p\colonE\toB
F,
G*
Hk(B;Gq(F))\cong
2 | |
E | |
k,q |
\impliesGk(E).
Fibrations do not yield long exact sequences in homology, as they do in homotopy. But under certain conditions, fibrations provide exact sequences in homology. For a fibration
p\colonE\toB
F,
\pi1(B)
H*(F)
Hp(B)=0
0<p<m
Hq(F)=0
0<q<n
This sequence can be used, for example, to prove Hurewicz's theorem or to compute the homology of loopspaces of the formHm+n-1(F)\xrightarrow{i*}Hm+n-1(E)\xrightarrow{f*}Hm+n-1(B)\xrightarrow\tauHm+n-2(F)\xrightarrow{i*} … \xrightarrow{f*}H1(B)\to0.
\OmegaSn:
For the special case of a fibrationHk(\OmegaSn)=\begin{cases}\Z&\existq\in\Z\colonk=q(n-1)\ 0&otherwise\end{cases}.
p\colonE\toSn
n
F,
… \toHq(F)\xrightarrow{i*}Hq(E)\toHq-n(F)\toHq-1(F)\to …
… \toHq(E)\xrightarrow{i*}Hq(F)\toHq-n+1(F)\toHq+1(E)\to …
For a fibration
p\colonE\toB
F
R
B
R
b\inB
H*(Fb,R)
[\omega]
h[\omega]*\colonH*(F\omega,R)\toH*(F\omega,R),
h[\omega]
[F\omega(0),F\omega].
A fibration is called orientable over
R
\omega
B
h[\omega]*=1.
For an orientable fibration
p\colonE\toB
K
F
Here the Euler characteristics of the base space and the fiber are defined over the field\chi(E)=\chi(B)\chi(F).
K