In mathematics, the Fibonomial coefficients or Fibonacci-binomial coefficients are defined as
\binom{n}{k}F=
FnFn-1 … Fn-k+1 | |
FkFk-1 … F1 |
=
n!F | |
k!F(n-k)!F |
where n and k are non-negative integers, 0 ≤ k ≤ n, Fj is the j-th Fibonacci number and n!F is the nth Fibonorial, i.e.
{n!}F:=
n | |
\prod | |
i=1 |
Fi,
where 0!F, being the empty product, evaluates to 1.
The Fibonomial coefficients are all integers. Some special values are:
\binom{n}{0}F=\binom{n}{n}F=1
\binom{n}{1}F=\binom{n}{n-1}F=Fn
\binom{n}{2}F=\binom{n}{n-2}F=
FnFn-1 | |
F2F1 |
=FnFn-1,
\binom{n}{3}F=\binom{n}{n-3}F=
FnFn-1Fn-2 | |
F3F2F1 |
=FnFn-1Fn-2/2,
\binom{n}{k}F=\binom{n}{n-k}F.
The Fibonomial coefficients are similar to binomial coefficients and can be displayed in a triangle similar to Pascal's triangle. The first eight rows are shown below.
width='40pt' | width='30pt' | width='20pt' | width='20pt' | width='20pt' | width='20pt' | width='20pt' | width='20pt' | width='20pt' | width='20pt' | width='20pt' | width='20pt' | width='20pt' | width='20pt' | width='20pt' | width='20pt' | width='20pt' | width='20pt' | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n=0 | 1 | ||||||||||||||||||||||||||||||||||
n=1 | 1 | 1 | |||||||||||||||||||||||||||||||||
n=2 | 1 | 1 | 1 | ||||||||||||||||||||||||||||||||
n=3 | 1 | 2 | 2 | 1 | |||||||||||||||||||||||||||||||
n=4 | 1 | 3 | 6 | 3 | 1 | ||||||||||||||||||||||||||||||
n=5 | 1 | 5 | 15 | 15 | 5 | 1 | |||||||||||||||||||||||||||||
n=6 | 1 | 8 | 40 | 60 | 40 | 8 | 1 | ||||||||||||||||||||||||||||
n=7 | 1 | 13 | 104 | 260 | 260 | 104 | 13 | 1 |
The recurrence relation
\binom{n}{k}F=Fn-k+1\binom{n-1}{k-1}F+Fk-1\binom{n-1}{k}F
implies that the Fibonomial coefficients are always integers.
\varphi= | 1+\sqrt5 |
2 |
{\binomnk}F=\varphik(n-k){\binomn
k} | |
-1/\varphi2 |
Dov Jarden proved that the Fibonomials appear as coefficients of an equation involving powers of consecutive Fibonacci numbers, namely Jarden proved that given any generalized Fibonacci sequence
Gn
Gn=Gn-1+Gn-2
n,
k+1 | |
\sum | |
j=0 |
(-1)j(j+1)/2\binom{k+1}{j}F
k | |
G | |
n-j |
=0,
for every integer
n
k