Fibonomial coefficient explained

In mathematics, the Fibonomial coefficients or Fibonacci-binomial coefficients are defined as

\binom{n}{k}F=

FnFn-1Fn-k+1
FkFk-1F1

=

n!F
k!F(n-k)!F

where n and k are non-negative integers, 0 ≤ k ≤ n, Fj is the j-th Fibonacci number and n!F is the nth Fibonorial, i.e.

{n!}F:=

n
\prod
i=1

Fi,

where 0!F, being the empty product, evaluates to 1.

Special values

The Fibonomial coefficients are all integers. Some special values are:

\binom{n}{0}F=\binom{n}{n}F=1

\binom{n}{1}F=\binom{n}{n-1}F=Fn

\binom{n}{2}F=\binom{n}{n-2}F=

FnFn-1
F2F1

=FnFn-1,

\binom{n}{3}F=\binom{n}{n-3}F=

FnFn-1Fn-2
F3F2F1

=FnFn-1Fn-2/2,

\binom{n}{k}F=\binom{n}{n-k}F.

Fibonomial triangle

The Fibonomial coefficients are similar to binomial coefficients and can be displayed in a triangle similar to Pascal's triangle. The first eight rows are shown below.

width='40pt' width='30pt' width='20pt' width='20pt' width='20pt' width='20pt' width='20pt' width='20pt' width='20pt' width='20pt' width='20pt' width='20pt' width='20pt' width='20pt' width='20pt' width='20pt' width='20pt' width='20pt'

n=0

1

n=1

1 1

n=2

1 1 1

n=3

1 2 2 1

n=4

1 3 6 3 1

n=5

1 5 15 15 5 1

n=6

1 8 40 60 40 8 1

n=7

1 13 104 260 260 104 13 1

The recurrence relation

\binom{n}{k}F=Fn-k+1\binom{n-1}{k-1}F+Fk-1\binom{n-1}{k}F

implies that the Fibonomial coefficients are always integers.

\varphi=1+\sqrt5
2
:

{\binomnk}F=\varphik(n-k){\binomn

k}
-1/\varphi2

Applications

Dov Jarden proved that the Fibonomials appear as coefficients of an equation involving powers of consecutive Fibonacci numbers, namely Jarden proved that given any generalized Fibonacci sequence

Gn

, that is, a sequence that satisfies

Gn=Gn-1+Gn-2

for every

n,

then
k+1
\sum
j=0

(-1)j(j+1)/2\binom{k+1}{j}F

k
G
n-j

=0,

for every integer

n

, and every nonnegative integer

k

.

References