Ferrers function explained

In mathematics, Ferrers functions are certain special functions defined in terms of hypergeometric functions.They are named after Norman Macleod Ferrers.

Definitions

When the order μ and the degree ν are real and x ∈ (-1,1)

Ferrers function of the first kind
\mu(x)
P
v

=\left(

1+x
1-x

\right)\mu/2

{
2F

1(v+1,-v;1-\mu;1/2-x/2)}{\Gamma(1-\mu)}

Ferrers function of the second kind
\mu(x)=
Q
v
\pi\left(\cos(\mu\pi)\left(
2\sin(\mu\pi)
1+x
1-x
\mu
2{
2F
\right)\left(
1\left(v+1,-v;1-\mu;1-x
2\right)}{\Gamma(1-\mu)}-\Gamma(\nu+\mu+1)
\Gamma(\nu-\mu+1)
1-x
1+x
\mu
2{
2F
\right)
1\left(v+1,-v;1+\mu;1-x
2\right)}{\Gamma(1+\mu)}\right)

See also