Fermat quotient explained

In number theory, the Fermat quotient of an integer a with respect to an odd prime p is defined as[1] [2] [3]

qp(a)=

ap-1-1
p

,

or

\deltap(a)=

a-ap
p
.

This article is about the former; for the latter see p-derivation. The quotient is named after Pierre de Fermat.

If the base a is coprime to the exponent p then Fermat's little theorem says that qp(a) will be an integer. If the base a is also a generator of the multiplicative group of integers modulo p, then qp(a) will be a cyclic number, and p will be a full reptend prime.

Properties

From the definition, it is obvious that

\begin{align} qp(1)&\equiv0&&\pmod{p}\\ qp(-a)&\equivqp(a)&&\pmod{p}(since2\midp-1) \end{align}

In 1850, Gotthold Eisenstein proved that if a and b are both coprime to p, then:[4]

\begin{align} qp(ab)&\equivqp(a)+qp(b)&&\pmod{p}

r)
\\ q
p(a

&\equivrqp(a)&&\pmod{p}\\ qp(p\mpa)&\equivqp(a)\pm\tfrac{1}{a}&&\pmod{p}\\ qp(p\mp1)&\equiv\pm1&&\pmod{p} \end{align}

Eisenstein likened the first two of these congruences to properties of logarithms. These properties imply

\begin{align} qp\left(\tfrac{1}{a}\right)&\equiv-qp(a)&&\pmod{p}\\ qp\left(\tfrac{a}{b}\right)&\equivqp(a)-qp(b)&&\pmod{p} \end{align}

In 1895, Dmitry Mirimanoff pointed out that an iteration of Eisenstein's rules gives the corollary:[5]

qp(a+np)\equivqp(a)-n\tfrac{1}{a}\pmod{p}.

From this, it follows that:[6]

2)\equiv
q
p(a+np

qp(a)\pmod{p}.

Lerch's formula

M. Lerch proved in 1905 that[7] [8] [9]

p-1
\sum
j=1

qp(j)\equivWp\pmod{p}.

Here

Wp

is the Wilson quotient.

Special values

Eisenstein discovered that the Fermat quotient with base 2 could be expressed in terms of the sum of the reciprocals modulo p of the numbers lying in the first half of the range :

-2qp(2)\equiv

p-1
2
\sum
k=1
1
k

\pmod{p}.

Later writers showed that the number of terms required in such a representation could be reduced from 1/2 to 1/4, 1/5, or even 1/6:

-3qp(2)\equiv

\lfloorp\rfloor
4
\sum
k=1
1
k

\pmod{p}.

[10]

4qp(2)\equiv

\lfloor2p\rfloor
10
\sum
k=\lfloorp\rfloor+1
10
1
k

+

\lfloor4p\rfloor
10
\sum
k=\lfloor3p\rfloor+1
10
1
k

\pmod{p}.

[11]

2qp(2)\equiv

\lfloorp\rfloor
3
\sum
k=\lfloorp\rfloor+1
6
1
k

\pmod{p}.

[12] [13]

Eisenstein's series also has an increasingly complex connection to the Fermat quotients with other bases, the first few examples being:

-3qp(3)\equiv

\lfloorp\rfloor
3
2\sum
k=1
1
k

\pmod{p}.

[14]

-5qp(5)\equiv

\lfloorp\rfloor
5
4\sum
k=1
1
k

+

\lfloor2p\rfloor
5
2\sum
k=\lfloorp\rfloor+1
5
1
k

\pmod{p}.

[15]

Generalized Wieferich primes

If qp(a) ≡ 0 (mod p) then ap−1 ≡ 1 (mod p2). Primes for which this is true for a = 2 are called Wieferich primes. In general they are called Wieferich primes base a. Known solutions of qp(a) ≡ 0 (mod p) for small values of a are:[1]

ap (checked up to 5 × 1013)OEIS sequence
1 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... (All primes)
2 1093, 3511
3 11, 1006003
4 1093, 3511
5 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801
6 66161, 534851, 3152573
7 5, 491531
8 3, 1093, 3511
9 2, 11, 1006003
10 3, 487, 56598313
11 71
12 2693, 123653
13 2, 863, 1747591
14 29, 353, 7596952219
15 29131, 119327070011
16 1093, 3511
17 2, 3, 46021, 48947, 478225523351
18 5, 7, 37, 331, 33923, 1284043
19 3, 7, 13, 43, 137, 63061489
20 281, 46457, 9377747, 122959073
21 2
22 13, 673, 1595813, 492366587, 9809862296159
23 13, 2481757, 13703077, 15546404183, 2549536629329
24 5, 25633
25 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801
26 3, 5, 71, 486999673, 6695256707
27 11, 1006003
28 3, 19, 23
29 2
30 7, 160541, 94727075783

For more information, see [16] [17] [18] and.[19]

The smallest solutions of qp(a) ≡ 0 (mod p) with a = n are:

2, 1093, 11, 1093, 2, 66161, 5, 3, 2, 3, 71, 2693, 2, 29, 29131, 1093, 2, 5, 3, 281, 2, 13, 13, 5, 2, 3, 11, 3, 2, 7, 7, 5, 2, 46145917691, 3, 66161, 2, 17, 8039, 11, 2, 23, 5, 3, 2, 3, ...

A pair (p, r) of prime numbers such that qp(r) ≡ 0 (mod p) and qr(p) ≡ 0 (mod r) is called a Wieferich pair.

References

  1. Web site: The Prime Glossary: Fermat quotient . 2024-03-16 . t5k.org.
  2. [Paulo Ribenboim]
  3. [Paulo Ribenboim]
  4. [Gotthold Eisenstein]
  5. [Dmitry Mirimanoff]
  6. [Paul Bachmann]
  7. Lerch . Mathias. Zur Theorie des Fermatschen Quotienten
    ap-1-1
    p

    =q(a)

    . Mathematische Annalen . 1905 . 60 . 471–490 . 10.1007/bf01561092. 10338.dmlcz/120531 . 123353041. free .
  8. Sondow . Jonathan. Lerch quotients, Lerch primes, Fermat-Wilson quotients, and the Wieferich-non-Wilson primes 2, 3, 14771 . 2014 . math.NT. 1110.3113.
  9. Sondow . Jonathan . MacMillan . Kieren . Reducing the Erdős-Moser equation

    1n+2n+ … +kn=(k+1)n

    modulo

    k

    and

    k2

    . 2011 . math.NT . 1011.2154.
  10. [James Whitbread Lee Glaisher]
  11. [Ladislav Skula]
  12. Emma Lehmer, "On Congruences involving Bernoulli Numbers and the Quotients of Fermat and Wilson," Annals of Mathematics 39 (1938): 350–360, pp. 356ff.
  13. Karl Dilcher and Ladislav Skula, "A New Criterion for the First Case of Fermat's Last Theorem," Mathematics of Computation 64 (1995): 363-392.
  14. [James Whitbread Lee Glaisher]
  15. [Mathias Lerch]
  16. http://www.fermatquotient.com/FermatQuotienten/FermQ_Sort.txt Wieferich primes to bases up to 1052
  17. Web site: Wieferich.txt primes to bases up to 10125 . 2014-07-22 . 2014-07-29 . https://web.archive.org/web/20140729174638/http://www.fermatquotient.com/FermatQuotienten/FermQ_Sorg . dead .
  18. http://www1.uni-hamburg.de/RRZ/W.Keller/FermatQuotient.html Wieferich prime in prime bases up to 1000
  19. http://www.fermatquotient.com/FermatQuotienten/FermatQ3.txt Wieferich primes with level >= 3

External links