In geometry, the Fermat cubic, named after Pierre de Fermat, is a surface defined by
x3+y3+z3=1.
Methods of algebraic geometry provide the following parameterization of Fermat's cubic:
x(s,t)={3t-{1\over3}(s2+st+t2)2\overt(s2+st+t2)-3}
y(s,t)={3s+3t+{1\over3}(s2+st+t2)2\overt(s2+st+t2)-3}
z(s,t)={-3-(s2+st+t2)(s+t)\overt(s2+st+t2)-3}.
In projective space the Fermat cubic is given by
w3+x3+y3+z3=0.
Real points of Fermat cubic surface.