Ferae Explained

Ferae (pronounced as /la/, "wild beasts") is a mirorder of placental mammals[1] [2] from grandorder Ferungulata, that groups together clades Pan-Carnivora, which includes modern carnivorans, and Pholidotamorpha, which includes pangolins.

General characteristics

In mirorder Ferae

The common feature for members of this mirorder is ossified tentorium cerebelli and the fusion of the scaphoid and lunate bones in the wrist.[3]

In clade Pan-Carnivora

The common features for members of clade Pan-Carnivora are:

Carnassials are feature that allows distinguishing the Carnivoramorpha, Oxyaenodonta and Hyaenodonta from the other carnivorous placental mammals.[3] However, these mammals are distinguished between them self based on the position of the carnassial teeth and the number of molars. The carnassial teeth of the Carnivoramorpha are located in P4 and m1, in Oxyaenodonta are M1 and m2, and in Hyaenodonta and close relatives are M2 and m3. This appears to be a case of a possible evolutionary convergent adaptation toward similar diet.[3]

Classification and phylogeny

Sister groups to Ferae and position of pangolins and creodonts

According to recent studies (reflected in the diagram below), the closest living relatives of Ferae are members of mirorder Euungulata (group of mammals which includes order Perissodactyla and Artiodactyla).[4] [5]

An alternate phylogeny holds that the closest relatives to the Ferae are the Perissodactyla and Chiroptera (bats), not Artiodactyla.[6] Ferae together with Perissodactyla has been called Zooamata. Ferae, Perissodactyla, and Chiroptera together has been called Pegasoferae. Subsequent molecular studies have generally failed to support the proposal.[7] [8] [9] [10] [11]

Pangolins were long thought to be the closest relatives of aardvark and xenarthrans (armadillos, anteaters, and sloths), forming to the now obsolete order Edentata. Research based on immunodiffusion technique[12] and comparison of protein and DNA sequences[13] [14] [15] revealed the close relationships between pangolins and carnivorans, with whom they also share a few unusual derived morphological and anatomical traits, such as the ossified tentorium cerebelli and the fusion of the scaphoid and lunate bones in the wrist. The last common ancestor of extant Ferae is supposed to have diversified c. 79.47 million years ago.

While there has been strong support in the inclusion of order Creodonta into Ferae, they were usually recovered as sister taxon to Carnivora.[1] The Halliday et al. (2015) phylogenetic analysis of hundreds of morphological characters of Paleocene placentals found instead that creodonts might be the sister group to Pholidotamorpha (pangolins and their stem-relatives). However, recent studies have shown that Creodonta is an invalid polyphyletic taxon. Members of this group are part of clade Pan-Carnivora and sister taxa to Carnivoramorpha (carnivorans and their stem-relatives). They are split in two groups: order Oxyaenodonta on one side and order Hyaenodonta plus its stem-relatives (family Wyolestidae and genera Altacreodus, Simidectes and Tinerhodon) on the other.[16] [17] [18] [19] [20]

Taxonomy

Alternative classification and possible fossil members

In Halliday et al. (2015) various enigmatic Palaeocene mammals have been proposed to be possible members to Ferae, like members of orders Pantodonta and Taeniodonta, and families Didelphodontidae, Nyctitheriidae, Oxyclaenidae, Palaeoryctidae, Pantolestidae, Pentacodontidae, Periptychidae and Triisodontidae.[22] In addition various "hoofed mammals" like the mesonychians and arctocyonids (usually considered as a stem-artiodactyls[23]) also placed in this group. Mesonychians are placed as the sister group to carnivoramorphs, while arctocyonids are polyphyletic with Arctocyon and Loxolophus sister to pantodonts and periptychids, Goniacodon and Eoconodon sister to the Carnivoramorpha-Mesonychia clade, most other genera allied with creodonts and palaeoryctidans.[22] This enlarged Ferae was also found to be the sister group to Chiroptera,[22] even though recent studies dispute this classification.[24] [25]

See also

Notes and References

  1. Book: McKenna, M. C. . 1975 . Toward a phylogenetic classification of the Mammalia . 21–46 . W. P. . Luckett . F. S. . Szalay . Phylogeny of the Primates . Plenum . New York.
  2. Malcolm C. McKenna, Susan K. Bell: Classification of Mammals: Above the Species Level in Columbia University Press, New York (1997), 631 Seiten.
  3. Floréal Solé & Thierry Smith (2013.) "Dispersals of placental carnivorous mammals (Carnivoramorpha, Oxyaenodonta & Hyaenodontida) near the Paleocene-Eocene boundary: a climatic and almost worldwide story" Geologica Belgica 16/4: 254–261
  4. Beck . Robin MD . Bininda-Emonds . Olaf RP . Cardillo . Marcel . Liu . Fu-Guo . Purvis . Andy . A higher-level MRP supertree of placental mammals . BMC Evolutionary Biology . 13 November 2006 . 6 . 1 . 93 . 10.1186/1471-2148-6-93 . 17101039 . 1654192 . free .
  5. Zhou, X. . 2011 . Phylogenomic analysis resolves the interordinal relationships and rapid diversification of the Laurasiatherian mammals . . 10.1093/sysbio/syr089 . 61 . 150–64 . 21900649 . 3243735 . 1. etal. (Advance Access; published online 7 September 2011)
  6. Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions . 10.1073/pnas.0603797103 . 2006 . Nishihara, H. . Proceedings of the National Academy of Sciences . 103 . 9929–34 . 16785431 . Hasegawa . M . Okada . N . 26 . 1479866 . 2006PNAS..103.9929N . free.
  7. Matthee . Conrad A. . Eick . Geeta . Willows-Munro . Sandi . Montgelard . Claudine . Pardini . Amanda T. . Robinson . Terence J. . 10.1016/j.ympev.2006.10.002 . Indel evolution of mammalian introns and the utility of non-coding nuclear markers in eutherian phylogenetics . Molecular Phylogenetics and Evolution . 42 . 3 . 2007 . 17101283 . 827–837.
  8. 10.1080/10635150701491149 . Springer . M.S. . Burk-Herrick . A. . Meredith . R. . Eizirik . E. . Teeling . E. . O'Brien . S.J. . Murphy . W.J. . 2007 . The adequacy of morphology for reconstructing the early history of placental mammals . Systematic Biology . 56 . 4 . 17661234 . 673–684.
  9. Kitazoe . Yasuhiro . Kishino . Hirohisa . Waddell . Peter J. . Nakajima . Noriaki . Okabayashi . Takahisa . Watabe . Teruaki . Okuhara . Yoshiyasu . Hahn . Matthew . Robust Time Estimation Reconciles Views of the Antiquity of Placental Mammals . 10.1371/journal.pone.0000384 . PLOS ONE . 2 . 4 . e384 . 2007 . 17440620 . 1849890. 2007PLoSO...2..384K . free .
  10. Zhou . Xuming . Xu . Shixia . Xu . Junxiao . Chen . Bingyao . Zhou . Kaiya . Yang . Guang . 10.1093/sysbio/syr089 . Phylogenomic Analysis Resolves the Interordinal Relationships and Rapid Diversification of the Laurasiatherian Mammals . Systematic Biology . 61 . 1 . 2011 . 21900649 . 3243735 . 150–164.
  11. 10.1016/j.cub.2013.09.014 . Tsagkogeorga . G . Parker . J . Stupka . E . Cotton . JA . Rossiter . SJ . 2013 . Phylogenomic analyses elucidate the evolutionary relationships of bats (Chiroptera) . Current Biology . 23 . 24184098 . 22 . 2262–2267. 9133016 . free .
  12. Shoshani . J. . 1986-05-01 . Mammalian phylogeny: comparison of morphological and molecular results. . Molecular Biology and Evolution . en . 3 . 3 . 222–242 . 10.1093/oxfordjournals.molbev.a040389 . 3127652 . 0737-4038. free .
  13. Book: Shoshani . Jeheskel . Goodman . Morris . Czelusniak . John . Braunitzer . Gerhard . A Phylogeny of Rodentia and Other Eutherian Orders: Parsimony Analysis Utilizing Amino Acid Sequences of Alpha and Beta Hemoglobin Chains . 1985 . Luckett . W. Patrick . Hartenberger . Jean-Louis . Evolutionary Relationships among Rodents . NATO Advanced Science Institutes (ASI) Series . en . Boston, MA . Springer US . 191–210 . 10.1007/978-1-4899-0539-0_7 . 978-1-4899-0539-0.
  14. Madsen . Ole . Scally . Mark . Douady . Christophe J. . Kao . Diana J. . DeBry . Ronald W. . Adkins . Ronald . Amrine . Heather M. . Stanhope . Michael J. . de Jong . Wilfried W. . Springer . Mark S. . 2001 . Parallel adaptive radiations in two major clades of placental mammals . Nature . en . 409 . 6820 . 610–614 . 10.1038/35054544 . 1476-4687 . 11214318 . 2001Natur.409..610M . 4398233.
  15. vanc . 2 . Murphy . William J. . Eizirik . Eduardo . O'Brien . Stephen J. . Madsen . Ole . Scally . Mark . Douady . Christophe J. . Teeling . Emma . Ryder . Oliver A. . Stanhope . Michael J. . de Jong . Wilfried W. . Springer . Mark S. . 2001-12-14 . Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics . Science . 10.1126/science.1067179 . 11743200 . 2001Sci...294.2348M . 294 . 5550 . 2348–2351. 34367609.
  16. Borths . Matthew R . Stevens . Nancy J . 2017 . Deciduous dentition and dental eruption of Hyainailouroidea (Hyaenodonta, "Creodonta," Placentalia, Mammalia) . Palaeontologia Electronica . 20 . 3 . 55A . 10.26879/776 . free.
  17. 10.1111/ede.12219. Evolution of the hypercarnivorous dentition in mammals (Metatheria,Eutheria) and its bearing on the development of tribosphenic molars. 2017. Solé. Floréal. Ladevèze. Sandrine. Evolution & Development. 19. 2. 56–68. 28181377. 46774007.
  18. Prevosti, F. J., & Forasiepi, A. M. (2018). "Introduction. Evolution of South American Mammalian Predators During the Cenozoic: Paleobiogeographic and Paleoenvironmental Contingencies"
  19. Matthew R. Borths . Nancy J. Stevens . 2019 . Simbakubwa kutokaafrika, gen. et sp. nov. (Hyainailourinae, Hyaenodonta, 'Creodonta,' Mammalia), a gigantic carnivore from the earliest Miocene of Kenya . Journal of Vertebrate Paleontology . 39 . 1 . e1570222 . 10.1080/02724634.2019.1570222. 2019JVPal..39E0222B . 145972918 .
  20. Floréal Solé . Bernard Marandat . Fabrice Lihoreau . 2020 . The hyaenodonts (Mammalia) from the French locality of Aumelas (Hérault), with possible new representatives from the late Ypresian . Geodiversitas . 42 . 13 . 185–214 . 10.5252/geodiversitas2020v42a13 . 219585388 . free .
  21. J. J. Flynn, A. R. Wyss and M. Wolsan (2020.) "Pan-Carnivora, new clade name" In book: Phylonyms (pp.979–982)
  22. Halliday . Thomas J. D. . Upchurch . Paul . Goswami . Anjali . Resolving the relationships of Paleocene placental mammals . Biological Reviews . 92 . 1 . 2015 . 521–550 . 1464-7931 . 10.1111/brv.12242 . 28075073 . 6849585.
  23. Reassessment of the Small 'Arctocyonid' Prolatidens waudruae from the Early Paleocene of Belgium, and Its Phylogenetic Relationships with Ungulate-Like Mammals . De Bast . Smith . 2013 . Journal of Vertebrate Paleontology . 33 . 4 . 964–976 . 10.1080/02724634.2013.747531. 86402154 .
  24. Frank Zachos (2020.) "Mammalian Phylogenetics: A Short Overview of Recent Advances", In book: "Mammals of Europe – Past, Present, and Future" (pp.31–48)
  25. Xue Lv, Jingyang Hu, Yiwen Hu, Yitian Li, Dongming Xu, Oliver A. Ryder, David M. Irwin, Li Yu (2021.) "Diverse phylogenomic datasets uncover a concordant scenario of laurasiatherian interordinal relationships", Molecular Phylogenetics and Evolution, Volume 157