In mathematics, the Fejér kernel is a summability kernel used to express the effect of Cesàro summation on Fourier series. It is a non-negative kernel, giving rise to an approximate identity. It is named after the Hungarian mathematician Lipót Fejér (1880 - 1959).
The Fejér kernel has many equivalent definitions. We outline three such definitions below:
1) The traditional definition expresses the Fejér kernel
Fn(x)
Fn(x)=
1 | |
n |
n-1 | |
\sum | |
k=0 |
Dk(x)
where
Dk(x)=\sum
k | |
s=-k |
{\rme}isx
2) The Fejér kernel
Fn(x)
Fn(x)=
1 | \left( | |
n |
| ||||||
|
\right)2=
1 | \left( | |
n |
1-\cos(nx) | |
1-\cos(x) |
\right)
This closed form expression may be derived from the definitions used above. The proof of this result goes as follows.
First, we use the fact that the Dirichlet kernel may be written as:[2]
D | |||||||||||
|
Using the trigonometric identity:
\sin(\alpha) ⋅ \sin(\beta)= | 1 |
2 |
(\cos(\alpha-\beta)-\cos(\alpha+\beta))
Hence it follows that:
3) The Fejér kernel can also be expressed as:
Fn(x)=\sum\left(1-
|k| | |
n |
\right)eikx
The Fejér kernel is a positive summability kernel. An important property of the Fejér kernel is
Fn(x)\ge0
1
The convolution Fn is positive: for
f\ge0
2\pi
0\le
(f*F | ||||
|
\pi | |
\int | |
-\pi |
f(y)Fn(x-y)dy.
Since
f*Dn=Sn(f)=\sum|j|\le
ijx | |
\widehat{f} | |
je |
f*F | ||||
|
n-1 | |
\sum | |
k=0 |
Sk(f)
By Young's convolution inequality,
\|Fn*f
\| | |
Lp([-\pi,\pi]) |
\le
\|f\| | |
Lp([-\pi,\pi]) |
forevery1\lep\leinftyforf\inLp.
Additionally, if
f\inL1([-\pi,\pi])
f*Fn → f
[-\pi,\pi]
L1([-\pi,\pi])\supsetL2([-\pi,\pi])\supset … \supsetLinfty([-\pi,\pi])
Lp
p\ge1
If
f
f,g\inL1
\hat{f}=\hat{g}
f=g
f*Fn=\sum|j|\le\left(1-
|j| | |
n |
ijt | |
\right)\hat{f} | |
je |
\limn\toinftySn(f)
\limn\toinftyFn(f)=f
Fn*f