The first Feigenbaum constant is the limiting ratio of each bifurcation interval to the next between every period doubling, of a one-parameter map
xi+1=f(xi),
\delta=\limn
an-1-an-2 | |
an-an-1 |
=4.669201609\ldots,
To see how this number arises, consider the real one-parameter map
f(x)=a-x2.
Period | Bifurcation parameter | Ratio | |
---|---|---|---|
1 | 2 | 0.75 | — |
2 | 4 | 1.25 | — |
3 | 8 | 4.2337 | |
4 | 16 | 4.5515 | |
5 | 32 | 4.6458 | |
6 | 64 | 4.6639 | |
7 | 128 | 4.6682 | |
8 | 256 | 4.6689 | |
The ratio in the last column converges to the first Feigenbaum constant. The same number arises for the logistic map
f(x)=ax(1-x)
Period | Bifurcation parameter | Ratio | |
---|---|---|---|
1 | 2 | 3 | — |
2 | 4 | — | |
3 | 8 | 4.7514 | |
4 | 16 | 4.6562 | |
5 | 32 | 4.6683 | |
6 | 64 | 4.6686 | |
7 | 128 | 4.6680 | |
8 | 256 | 4.6768 | |
In the case of the Mandelbrot set for complex quadratic polynomial
f(z)=z2+c
Period = | Bifurcation parameter | Ratio =\dfrac{cn-1-cn-2 | ||
---|---|---|---|---|
1 | 2 | — | ||
2 | 4 | — | ||
3 | 8 | 4.2337 | ||
4 | 16 | 4.5515 | ||
5 | 32 | 4.6459 | ||
6 | 64 | 4.6639 | ||
7 | 128 | 4.6668 | ||
8 | 256 | 4.6740 | ||
9 | 512 | 4.6596 | ||
10 | 1024 | 4.6750 | ||
... | ... | ... | ... | |
... |
Bifurcation parameter is a root point of period- component. This series converges to the Feigenbaum point = −1.401155...... The ratio in the last column converges to the first Feigenbaum constant.Other maps also reproduce this ratio; in this sense the Feigenbaum constant in bifurcation theory is analogous to in geometry and in calculus.