Faxén integral explained

In mathematics, the Faxén integral (also named Faxén function) is the following integral[1]

infty
\operatorname{Fi}(\alpha,\beta;x)=\int
0

\exp(-t+xt\alpha)t\beta-1dt,    (0\leq\operatorname{Re}(\alpha)<1,\operatorname{Re}(\beta)>0).

The integral is named after the Swedish physicist Olov Hilding Faxén, who published it in 1921 in his PhD thesis.[2]

n-dimensional Faxén integral

More generally one defines the

n

-dimensional Faxén integral as[3]

In(x)n\int

infty
0

infty
\int
0
\beta1-1
t
1

\betan-1
t
n
-f(t1,...,tn;x)
e

dt1 … dtn,

with

f(t1,...,tn;x):=\sum\limits

n
j=1
\muj
t
j
\alpha1
-xt
1

\alphan
t
n

and

  λn:=\prod\limits

n\mu
j
for

x\in\C

and

(0<\alphai<\mui,\operatorname{Re}(\betai)>0,i=1,...,n).

The parameter

λn

is only for convenience in calculations.

Properties

Let

\Gamma

denote the Gamma function, then

\operatorname{Fi}(\alpha,\beta;0)=\Gamma(\beta),

\operatorname{Fi}(0,\beta;x)=ex\Gamma(\beta).

For

\alpha=\beta=\tfrac{1}{3}

one has the following relationship to the Scorer function

\operatorname{Fi}(\tfrac{1}{3},\tfrac{1}{3};x)=32/3\pi\operatorname{Hi}(3-1/3x).

Asymptotics

For

x\toinfty

we have the following asymptotics[4]

\operatorname{Fi}(\alpha,\beta;-x)\sim

\Gamma(\beta/\alpha)
\alphay\beta/\alpha

,

\operatorname{Fi}(\alpha,\beta;x)\sim\left(

2\pi
1-\alpha

\right)1/2(\alphax)(2\beta-1)/(2-2\alpha)\exp\left((1-\alpha)(\alpha\alphay)1/(1-\alpha)\right).

References

  1. Book: Frank W. J. . Olver . A K Peters/CRC Press . Asymptotics and Special Functions . 1997 . 332 . 10.1201/9781439864548.
  2. Hilding. Faxén . PhD. . Einwirkung der Gefässwände auf den Widerstand gegen die Bewegung einer kleinen Kugel in einer zähen Flüssigkeit . 1921 .
  3. Richard Bruce. Paris. A K Peters/CRC Press . Asymptotic expansion of n-dimensional Faxén-type integrals . European Journal of Pure and Applied Mathematics . 3 . 6 . 2010 . 1006–1031 .
  4. David. Kaminski. Richard B.. Paris. Asymptotics via iterated Mellin–Barnes integrals: Application to the generalised Faxén integral . Methods and applications of analysis . 4 . 1997 . 311-325 .