In mathematics, the Faxén integral (also named Faxén function) is the following integral[1]
infty | |
\operatorname{Fi}(\alpha,\beta;x)=\int | |
0 |
\exp(-t+xt\alpha)t\beta-1dt, (0\leq\operatorname{Re}(\alpha)<1, \operatorname{Re}(\beta)>0).
The integral is named after the Swedish physicist Olov Hilding Faxén, who published it in 1921 in his PhD thesis.[2]
More generally one defines the
n
In(x)=λn\int
infty | |
0 |
…
infty | |
\int | |
0 |
\beta1-1 | |
t | |
1 |
…
\betan-1 | |
t | |
n |
-f(t1,...,tn;x) | |
e |
dt1 … dtn,
f(t1,...,tn;x):=\sum\limits
n | |
j=1 |
\muj | |
t | |
j |
\alpha1 | |
-xt | |
1 |
…
\alphan | |
t | |
n |
λn:=\prod\limits
n\mu | |
j |
x\in\C
(0<\alphai<\mui, \operatorname{Re}(\betai)>0, i=1,...,n).
λn
Let
\Gamma
\operatorname{Fi}(\alpha,\beta;0)=\Gamma(\beta),
\operatorname{Fi}(0,\beta;x)=ex\Gamma(\beta).
\alpha=\beta=\tfrac{1}{3}
\operatorname{Fi}(\tfrac{1}{3},\tfrac{1}{3};x)=32/3\pi\operatorname{Hi}(3-1/3x).
For
x\toinfty
\operatorname{Fi}(\alpha,\beta;-x)\sim
\Gamma(\beta/\alpha) | |
\alphay\beta/\alpha |
,
\operatorname{Fi}(\alpha,\beta;x)\sim\left(
2\pi | |
1-\alpha |
\right)1/2(\alphax)(2\beta-1)/(2-2\alpha)\exp\left((1-\alpha)(\alpha\alphay)1/(1-\alpha)\right).