Each can be visualized as symmetric orthographic projections in Coxeter planes of the F4 Coxeter group, and other subgroups.
The 3D picture are drawn as Schlegel diagram projections, centered on the cell at pos. 3, with a consistent orientation, and the 5 cells at position 0 are shown solid.
Name Coxeter diagram Schläfli symbol | Graph | Schlegel diagram | Orthogonal Projection | Net | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F4 [12]+ | B4 [8] | B3 [6]+ | B2 [4] | Octahedron centered | Dual octahedron centered | Octahedron centered | ||||
10 | snub 24-cell s | |||||||||
11 Nonuniform | runcic snub 24-cell s3 |
Vertex coordinates for all 15 forms are given below, including dual configurations from the two regular 24-cells. (The dual configurations are named in bold.) Active rings in the first and second nodes generate points in the first column. Active rings in the third and fourth nodes generate the points in the second column. The sum of each of these points are then permutated by coordinate positions, and sign combinations. This generates all vertex coordinates. Edge lengths are 2.
The only exception is the snub 24-cell, which is generated by half of the coordinate permutations, only an even number of coordinate swaps. φ=(+1)/2.
1 | (0,0,1,1) | 24-cell | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | (0,1,1,2) | r | rectified 24-cell | |||||||||
3 | (0,1,2,3) | t | truncated 24-cell | |||||||||
10 | (0,1,φ,φ+1) | s | snub 24-cell | |||||||||
2 | (0,2,2,2) (1,1,1,3) | r | rectified 24-cell | |||||||||
4 | (0,2,2,2) + (1,1,1,3) + | (0,0,1,1) " | rr | cantellated 24-cell | ||||||||
8 | (0,2,2,2) + (1,1,1,3) + | (0,1,1,2) " | 2t | bitruncated 24-cell | ||||||||
5 | (0,2,2,2) + (1,1,1,3) + | (0,1,2,3) " | tr | cantitruncated 24-cell | ||||||||
1 | (0,0,0,2) (1,1,1,1) | 24-cell | ||||||||||
7 | (0,0,0,2) + (1,1,1,1) + | (0,0,1,1) " | t0,3 | runcinated 24-cell | ||||||||
4 | (0,0,0,2) + (1,1,1,1) + | (0,1,1,2) " | t1,3 | cantellated 24-cell | ||||||||
6 | (0,0,0,2) + (1,1,1,1) + | (0,1,2,3) " | t0,1,3 | runcitruncated 24-cell | - BGCOLOR="#f0e0e0" align=center *** NEED TO VERIFY | Nonuniform | (0,0,0,2) + (1,1,1,1) + | (0,1,φ,φ+1) " | s3 | runcic snub 24-cell | --> | |
3 | (1,1,1,5) (1,3,3,3) (2,2,2,4) | t | truncated 24-cell | |||||||||
6 | (1,1,1,5) + (1,3,3,3) + (2,2,2,4) + | (0,0,1,1) " " | t0,2,3 | runcitruncated 24-cell | ||||||||
5 | (1,1,1,5) + (1,3,3,3) + (2,2,2,4) + | (0,1,1,2) " " | tr | cantitruncated 24-cell | ||||||||
9 | (1,1,1,5) + (1,3,3,3) + (2,2,2,4) + | (0,1,2,3) " " | t0,1,2,3 | Omnitruncated 24-cell |
]