In probability theory and statistics, the F-distribution or F-ratio, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor), is a continuous probability distribution that arises frequently as the null distribution of a test statistic, most notably in the analysis of variance (ANOVA) and other F-tests.[1] [2] [3]
The F-distribution with d1 and d2 degrees of freedom is the distribution of
X=
U1/d1 | |
U2/d2 |
where and are independent random variables with chi-square distributions with respective degrees of freedom and .
It can be shown to follow that the probability density function (pdf) for X is given by
\begin{align} f(x;d1,d2)&=
| |||||||||||||||||||||||||||||||
for real x > 0. Here
B
The cumulative distribution function is
F(x;d1,d2)=I
d1x/(d1x+d2) |
\left(\tfrac{d1}{2},\tfrac{d2}{2}\right),
where I is the regularized incomplete beta function.
The expectation, variance, and other details about the F(d1, d2) are given in the sidebox; for d2 > 8, the excess kurtosis is
\gamma2=12
| |||||||||||||
d1(d2-6)(d2-8)(d1+d2-2) |
.
The k-th moment of an F(d1, d2) distribution exists and is finite only when 2k < d2 and it is equal to
\muX(k)=\left(
d2 | |
d1 |
\right)k
\Gamma\left(\tfrac{d1 | |
2 |
+k\right)}{\Gamma\left(\tfrac{d1}{2}\right)}
\Gamma\left(\tfrac{d2 | |
2 |
-k\right)}{\Gamma\left(\tfrac{d2}{2}\right)}.
The F-distribution is a particular parametrization of the beta prime distribution, which is also called the beta distribution of the second kind.
The characteristic function is listed incorrectly in many standard references (e.g.,). The correct expression [5] is
F | |
\varphi | |
d1,d2 |
(s)=
| |||||
\Gamma\left(\tfrac{d2 |
{2}\right)}U\left(
d1 | ,1- | |
2 |
d2 | ,- | |
2 |
d2 | |
d1 |
\imaths\right)
where U(a, b, z) is the confluent hypergeometric function of the second kind.
A random variate of the F-distribution with parameters
d1
d2
X=
U1/d1 | |
U2/d2 |
where
U1
U2
d1
d2
U1
U2
In instances where the F-distribution is used, for example in the analysis of variance, independence of
U1
U2
Equivalently, since the chi-squared distribution is the sum of independent standard normal random variables, the random variable of the F-distribution may also be written
X=
| |||||||
|
÷
| |||||||
|
,
where
2 | |
s | |
1 |
=
| |||||||
d1 |
2 | |
s | |
2 |
=
| |||||||
d2 |
2 | |
S | |
1 |
d1
2) | |
N(0,\sigma | |
1 |
2 | |
S | |
2 |
d2
2) | |
N(0,\sigma | |
2 |
In a frequentist context, a scaled F-distribution therefore gives the probability
2 | |
p(s | |
2 |
\mid
2, | |
\sigma | |
1 |
2) | |
\sigma | |
2 |
2 | |
\sigma | |
1 |
2 | |
\sigma | |
2 |
The quantity
X
2 | |
\sigma | |
1 |
2 | |
\sigma | |
2 |
2 | |
p(\sigma | |
2 |
2 | |
/\sigma | |
1 |
\mid
2 | |
s | |
1, |
2 | |
s | |
2) |
2 | |
s | |
1 |
2 | |
s | |
2 |
X\sim
2 | |
\chi | |
d1 |
Y\sim
2 | |
\chi | |
d2 |
X/d1 | |
Y/d2 |
\simF(d1,d2)
Xk\sim\Gamma(\alphak,\betak)
\alpha2\beta1X1 | |
\alpha1\beta2X2 |
\simF(2\alpha1,2\alpha2)
X\sim\operatorname{Beta}(d1/2,d2/2)
d2X | |
d1(1-X) |
\sim\operatorname{F}(d1,d2)
X\simF(d1,d2)
d1X/d2 | |
1+d1X/d2 |
\sim\operatorname{Beta}(d1/2,d2/2)
X\simF(d1,d2)
d1 | |
d2 |
X
d1 | |
d2 |
X\sim
\prime}\left(\tfrac{d | |
\operatorname{\beta | |
1}{2},\tfrac{d |
2}{2}\right)
X\simF(d1,d2)
Y=
\lim | |
d2\toinfty |
d1X
2 | |
\chi | |
d1 |
F(d1,d2)
d2 | |
d1(d1+d2-1) |
\operatorname{T}2(d1,d1+d2-1)
X\simF(d1,d2)
X-1\simF(d2,d1)
X\simt(n)
X
Y
X,Y\sim
X\simF(n,m)
\tfrac{log{X}}{2}\sim\operatorname{FisherZ}(n,m)
λ=0
λ1=λ2=0
\operatorname{Q}X(p)
X\simF(d1,d2)
\operatorname{Q}Y(1-p)
1-p
Y\simF(d2,d1)
(0,infty)
f(x)=
| ||||||||||
|
\right)}}
\Psi(\alpha,z)={}1\Psi
|
\right)\\(1,0)\end{matrix};z\right)