In mathematics, an Fσ set (said F-sigma set) is a countable union of closed sets. The notation originated in French with F for (French: closed) and σ for (French: sum, union).[1]
The complement of an Fσ set is a Gδ set.[1]
Fσ is the same as
0 | |
\Sigma | |
2 |
Each closed set is an Fσ set.
The set
Q
R
\{x\}
The set
R\setminusQ
In metrizable spaces, every open set is an Fσ set.[2]
The union of countably many Fσ sets is an Fσ set, and the intersection of finitely many Fσ sets is an Fσ set.
The set
A
(x,y)
x/y
A=cupr\{(ry,y)\midy\inR\},
where
Q