In mathematics, extendible cardinals are large cardinals introduced by, who was partly motivated by reflection principles. Intuitively, such a cardinal represents a point beyond which initial pieces of the universe of sets start to look similar, in the sense that each is elementarily embeddable into a later one.
For every ordinal η, a cardinal κ is called η-extendible if for some ordinal λ there is a nontrivial elementary embedding j of Vκ+η into Vλ, where κ is the critical point of j, and as usual Vα denotes the αth level of the von Neumann hierarchy. A cardinal κ is called an extendible cardinal if it is η-extendible for every nonzero ordinal η (Kanamori 2003).
For a cardinal
\kappa
L
\kappa
A
L
A
<\kappa
A
\aleph0
2 | |
L | |
\kappa |
<\kappa
\kappa
2 | |
L | |
\kappa |
\kappa
A cardinal κ is called η-C(n)-extendible if there is an elementary embedding j witnessing that κ is η-extendible (that is, j is elementary from Vκ+η to some Vλ with critical point κ) such that furthermore, Vj(κ) is Σn-correct in V. That is, for every Σn formula φ, φ holds in Vj(κ) if and only if φ holds in V. A cardinal κ is said to be C(n)-extendible if it is η-C(n)-extendible for every ordinal η. Every extendible cardinal is C(1)-extendible, but for n≥1, the least C(n)-extendible cardinal is never C(n+1)-extendible (Bagaria 2011).
Vopěnka's principle implies the existence of extendible cardinals; in fact, Vopěnka's principle (for definable classes) is equivalent to the existence of C(n)-extendible cardinals for all n (Bagaria 2011). All extendible cardinals are supercompact cardinals (Kanamori 2003).
. Akihiro Kanamori. 2003. Springer. The Higher Infinite : Large Cardinals in Set Theory from Their Beginnings. The Higher Infinite . 2nd. 3-540-00384-3.