In probability and statistics, the class of exponential dispersion models (EDM), also called exponential dispersion family (EDF), is a set of probability distributions that represents a generalisation of the natural exponential family.[1] [2] [3] Exponential dispersion models play an important role in statistical theory, in particular in generalized linear models because they have a special structure which enables deductions to be made about appropriate statistical inference.
There are two versions to formulate an exponential dispersion model.
In the univariate case, a real-valued random variable
X
\theta
λ
X\simED*(\theta,λ)
fX(x\mid\theta,λ)=h*(λ,x)\exp\left(\thetax-λA(\theta)\right).
The distribution of the transformed random variable
Y= | X |
λ |
Y\simED(\mu,\sigma2)
fY(y\mid\mu,\sigma2)=h(\sigma2,y)\exp\left(
\thetay-A(\theta) | |
\sigma2 |
\right),
with
\sigma2=
1 | |
λ |
\mu=A'(\theta)
\theta=(A')-1(\mu)
\sigma2
\sigma2
ED(\mu,\sigma2)
In the multivariate case, the n-dimensional random variable
X
fX(x|\boldsymbol{\theta},λ)=h(λ,x)\exp\left(λ(\boldsymbol\theta\topx-A(\boldsymbol\theta))\right),
where the parameter
\boldsymbol\theta
X
The cumulant-generating function of
Y\simED(\mu,\sigma2)
K(t;\mu,\sigma2)=log\operatorname{E}[etY]=
A(\theta+\sigma2t)-A(\theta) | |
\sigma2 |
,
with
\theta=(A')-1(\mu)
Mean and variance of
Y\simED(\mu,\sigma2)
\operatorname{E}[Y]=\mu=A'(\theta), \operatorname{Var}[Y]=\sigma2A''(\theta)=\sigma2V(\mu),
with unit variance function
V(\mu)=A''((A')-1(\mu))
If
Y1,\ldots,Yn
Y | ||||
|
\right)
\mu
wi
ED
n | |
\sum | |
i=1 |
wiYi | |
w\bullet |
\simED\left(\mu,
\sigma2 | |
w\bullet |
\right),
with
w\bullet=
n | |
\sum | |
i=1 |
wi
Yi
The probability density function of an
ED(\mu,\sigma2)
d(y,\mu)
fY(y\mid\mu,\sigma2)=\tilde{h}(\sigma2,y)\exp\left(-
d(y,\mu) | |
2\sigma2 |
\right),
where the unit deviance takes the special form
d(y,\mu)=yf(\mu)+g(\mu)+h(y)
d(y,\mu)=2
y | |
\int | |
\mu |
y-t | |
V(t) |
dt
Many very common probability distributions belong to the class of EDMs, among them are: normal distribution, binomial distribution, Poisson distribution, negative binomial distribution, gamma distribution, inverse Gaussian distribution, and Tweedie distribution.