Exceptional Lie algebra explained
In mathematics, an exceptional Lie algebra is a complex simple Lie algebra whose Dynkin diagram is of exceptional (nonclassical) type. There are exactly five of them:
ak{g}2,ak{f}4,ak{e}6,ak{e}7,ak{e}8
; their respective dimensions are 14, 52, 78, 133, 248. The corresponding diagrams are:
In contrast, simple Lie algebras that are not exceptional are called classical Lie algebras (there are infinitely many of them).
Construction
There is no simple universally accepted way to construct exceptional Lie algebras; in fact, they were discovered only in the process of the classification program. Here are some constructions:
- § 22.1-2 of give a detailed construction of
.
- Exceptional Lie algebras may be realized as the derivation algebras of appropriate nonassociative algebras.
- Construct
first and then find
as subalgebras.
- Tits has given a uniformed construction of the five exceptional Lie algebras.[1]
References
Further reading
- https://www.encyclopediaofmath.org/index.php/Lie_algebra,_exceptional
- http://math.ucr.edu/home/baez/octonions/node13.html
Notes and References
- Tits . Jacques . Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionnelles. I. Construction . Indag. Math. . 1966 . 28 . 223–237 . 10.1016/S1385-7258(66)50028-2 . 9 August 2023.