Telluraves Explained

Telluraves (also called land birds or core landbirds) is a recently defined[1] clade of birds defined by their arboreality.[2] Based on most recent genetic studies, the clade unites a variety of bird groups, including the australavians (passerines, parrots, seriemas, and falcons) as well as the afroavians (including the Accipitrimorphaeeagles, hawks, buzzards, vultures etc. – owls and woodpeckers, among others).[3] They appear to be the sister group of the Phaethoquornithes.[4]

Given that the most basal extant members of both Afroaves (Accipitrimorphae, Strigiformes) and Australaves (Cariamiformes, Falconiformes) are carnivorous, it has been suggested that the last common ancestor of all Telluraves was probably a predator.[4] Other researchers are skeptical of this assessment, citing the herbivorous cariamiform Strigogyps as evidence to the contrary.[5]

Afroaves has not always been recovered as a monophyletic clade in subsequent studies.[6] For instance, Prum et al. (2015) recovered the accipitrimorphs as the sister group to a clade (Eutelluraves) comprising the remaining Afroavian orders and Australaves.,[7] while an analysis by Houde et al. (2019) recovered a clade of accipitrimorphs and owls as sister to the remaining landbirds.[8] Wu et al. (2024) also found recovered and found support the clade of accipitrimorphs and owls (which they have named Hieraves), but found the clade to be sister to Australaves, while Coraciimorphae is the basal most clade in Telluraves.[9]

The cladogram of the Telluraves shown below is based on the study by Josefin Stiller and collaborators published in 2024.[10] The species numbers are taken from the December 2023 version of the list maintained by Frank Gill, Pamela C. Rasmussen and David Donsker on behalf of the International Ornithological Committee (IOC). This list includes the Cathartiformes (New World vultures) in the order Accipitriformes.[11]

Notes and References

  1. Yuri . T. . Kimball . R.T. . Harshman . J. . Bowie . R.C.K. . Braun . M.J. . Chojnowski . J.L. . Han . K.-L. . Hackett . S.J. . Huddleston . C.J. . Moore . W.S. . Reddy . S. . Sheldon . F.H. . Steadman . D.W. . Witt . C.C. . Braun . E.L. . 2013 . Parsimony and model-based analyses of indels in avian nuclear genes reveal congruent and incongruent phylogenetic signals . Biology . 2 . 1 . 419–444 . 10.3390/biology2010419 . 24832669 . 4009869 . free .
  2. Crouch . N.M.A. . Ramanauskas . K. . Igić . B. . 2019 . Tip-dating and the origin of Telluraves . Molecular Phylogenetics and Evolution . 131 . 55–63 . 10.1016/j.ympev.2018.10.006. 30385308 . 53767029 .
  3. Ericson . P. G. . 2012 . Evolution of terrestrial birds in three continents: biogeography and parallel radiations . Journal of Biogeography . 39 . 5 . 813–824 . 10.1111/j.1365-2699.2011.02650.x . 2012JBiog..39..813E . 85599747 . dead . https://web.archive.org/web/20170830055430/http://www.naturhistoriska.com/download/18.9ff3752132fdaeccb6800037316/1335164422875/Ericson%20Gondwana%20JBI%202012.pdf . 2017-08-30 .
  4. 10.1126/science.1253451 . 25504713. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 346. 6215. 1320–1331. 2014. Jarvis . E. D. . Erich Jarvis. Mirarab . S.. Aberer . A. J.. Li . B.. Houde . P.. Li . C.. Ho . S. Y. W.. Faircloth . B. C.. Nabholz . B.. Howard . J. T.. Suh . A.. Weber . C. C.. Da Fonseca . R. R.. Li . J.. Zhang . F.. Li . H.. Zhou . L.. Narula . N.. Liu . L.. Ganapathy . G.. Boussau . B.. Bayzid . M. S.. Zavidovych . V.. Subramanian . S.. Gabaldon . T.. Capella-Gutierrez . S.. Huerta-Cepas . J.. Rekepalli . B.. Munch . K.. Schierup . M.. 29 . 4405904. 2014Sci...346.1320J. 10072/67425.
  5. Exceptionally preserved plant parenchyma in the digestive tract indicates a herbivorous diet in the Middle Eocene bird Strigogyps sapea (Ameghinornithidae). 10.1007/s12542-010-0094-5. 2011. Mayr. Gerald. Richter. Gotthard. Paläontologische Zeitschrift. 85. 3. 303–307. 2011PalZ...85..303M . 84479974.
  6. H. . Kuhl. . C. . Frankl-Vilches . A. . Bakker . G. . Mayr . G. . Nikolaus . S. T. . Boerno . S. . Klages . B. . Timmermann . M. . Gahr . 2020 . An unbiased molecular approach using 3'-UTRs resolves the avian family-level tree of life . Molecular Biology and Evolution . 38 . 108–127 . 10.1093/molbev/msaa191. 32781465 . 7783168 . free .
  7. Prum, R.O. et al. (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573.
  8. Houde. Peter. Braun. Edward L.. Narula. Nitish. Minjares. Uriel. Mirarab. Siavash. Phylogenetic signal of indels and the Neoavian radiation . Diversity . 11 . 7 . 2019. 108 . 10.3390/d11070108 . free.
  9. Wu. S.. Rheindt. F.E.. Zhang. J.. Wang. J.. Zhang. L.. Quan. C.. Zhiheng. L.. Wang. M.. Wu. F.. Qu. Y. Edwards. S.V.. Zhou. Z.. Liu. L.. Genomes, fossils, and the concurrent rise of modern birds and flowering plants in the Late Cretaceous. Proceedings of the National Academy of Sciences. 121. 8. 2024. 10.1073/pnas.2319696121. free. 10895254.
  10. Stiller . J. . etal . 2024 . Complexity of avian evolution revealed by family-level genomes . Nature . 629 . 851-860 . 10.1038/s41586-024-07323-1 . free . 11111414 .
  11. Web site: Gill . Frank . Frank Gill (ornithologist) . Donsker . David . Rasmussen . Pamela . Pamela C. Rasmussen . December 2023 . IOC World Bird List Version 14.1 . International Ornithologists' Union . 26 June 2024.