In mathematics, the Euler numbers are a sequence En of integers defined by the Taylor series expansion
1 | |
\cosht |
=
2 | |
et+e-t |
=
infty | |
\sum | |
n=0 |
En | |
n! |
⋅ tn
where
\cosh(t)
nE | |
E | |
n(\tfrac |
12).
The Euler numbers appear in the Taylor series expansions of the secant and hyperbolic secant functions. The latter is the function in the definition. They also occur in combinatorics, specifically when counting the number of alternating permutations of a set with an even number of elements.
The odd-indexed Euler numbers are all zero. The even-indexed ones have alternating signs. Some values are:
E0 | = | 1 | |
E2 | = | −1 | |
E4 | = | 5 | |
E6 | = | −61 | |
E8 | = | ||
E10 | = | ||
E12 | = | ||
E14 | = | ||
E16 | = | ||
E18 | = |
The following two formulas express the Euler numbers in terms of Stirling numbers of the second kind:[1] [2]
En=22n-1
n | |
\sum | |
\ell=1 |
(-1)\ellS(n,\ell) | \left(3\left( | |
\ell+1 |
1 | |
4 |
\right)\overline{\ell\phantom{.
E2n=-42n
2n | |
\sum | |
\ell=1 |
(-1)\ell ⋅
S(2n,\ell) | |
\ell+1 |
⋅ \left(
3 | |
4 |
\right)\overline{\ell\phantom{.
where
S(n,\ell)
x\overline{\ell\phantom{.
The following two formulas express the Euler numbers as double sums[3]
E2n=(2
2n | |
n+1)\sum | |
\ell=1 |
(-1)\ell
1 | |
2\ell(\ell+1) |
\binom{2n}{\ell}\sum
\ell | |
q=0 |
\binom{\ell}{q}(2q-\ell)2n,
E2n
2n | |
=\sum | |
k=1 |
(-1)k
1 | |
2k |
2k | |
\sum | |
\ell=0 |
(-1)\ell\binom{2k}{\ell}(k-\ell)2n.
An explicit formula for Euler numbers is:[4]
E2n=i\sum
2n+1 | |
k=1 |
\sum
k | ||
\binom{k}{\ell} | ||
\ell=0 |
(-1)\ell(k-2\ell)2n+1 | |
2kikk |
,
where denotes the imaginary unit with .
The Euler number can be expressed as a sum over the even partitions of,[5]
E2n=(2n)!
\sum | |
0\leqk1,\ldots,kn\leqn |
\binomK{k1,\ldots,kn} \delta
n,\summkm |
\left(-
1 | |
2! |
k1 | |
\right) |
\left(-
1 | |
4! |
k2 | |
\right) |
… \left(-
1 | |
(2n)! |
kn | |
\right) |
,
as well as a sum over the odd partitions of,[6]
E2n=(-1)n-1(2n-1)!
\sum | |
0\leqk1,\ldots,kn\leq2n-1 |
\binomK{k1,\ldots,kn}
\delta | |
2n-1,\sum(2m-1)km |
\left(-
1 | |
1! |
k1 | |
\right) |
\left(
1 | |
3! |
k2 | |
\right) |
… \left(
(-1)n | |
(2n-1)! |
kn | |
\right) |
,
where in both cases and
\binomK{k1,\ldots,kn} \equiv
K! | |
k1! … kn! |
As an example,
\begin{align} E10&=10!\left(-
1 | |
10! |
+
2 | |
2!8! |
+
2 | |
4!6! |
-
3 | |
2!26! |
-
3 | + | |
2!4!2 |
4 | |
2!34! |
-
1 | |
2!5 |
\right)\\[6pt] &=9!\left(-
1 | |
9! |
+
3 | |
1!27! |
+
6 | + | |
1!3!5! |
1 | |
3!3 |
-
5 | - | |
1!45! |
10 | |
1!33!2 |
+
7 | |
1!63! |
-
1 | |
1!9 |
\right)\\[6pt] &=-50521. \end{align}
is given by the determinant
\begin{align} E2n&=(-1)n(2n)!~\begin{vmatrix}
1 | |
2! |
&1&~&~&~\\
1 | |
4! |
&
1 | |
2! |
&1&~&~\\ \vdots&~&\ddots~~&\ddots~~&~\\
1 | |
(2n-2)! |
&
1 | |
(2n-4)! |
&~&
1 | |
2! |
&1\\
1 | & | |
(2n)! |
1 | |
(2n-2)! |
& … &
1 | |
4! |
&
1 | |
2! |
\end{vmatrix}. \end{align}
is also given by the following integrals:
\begin{align} (-1)nE2n&=
infty | |
\int | |
0 |
t2n | |||
|
dt=\left(
2\pi\right) | |
2n+1 |
infty | |
\int | |
0 |
x2n | |
\coshx |
dx\\[8pt] &=\left(
2\pi\right) | |
2n |
1log | |
\int | |
0 |
2n\left(\tan
\pit | |
4 |
\right)dt=\left(
2\pi\right) | |
2n+1 |
\pi/2 | |
\int | |
0 |
log2n\left(\tan
x | |
2 |
\right)dx\\[8pt] &=
22n+3 | |
\pi2n+2 |
\pi/2 | |
\int | |
0 |
xlog2n(\tanx)dx=\left(
2\pi\right) | |
2n+2 |
\pi | |
\int | |
0 |
x | |
2 |
log2n\left(\tan
x | |
2 |
\right)dx.\end{align}
W. Zhang[7] obtained the following combinational identities concerning the Euler numbers. For any prime
p
| ||||
(-1) |
Ep-1\equivstyle\begin{cases}\phantom{-}0\modp&ifp\equiv1\bmod4;\ -2\modp&ifp\equiv3\bmod4.\end{cases}
p\equiv1\pmod{4}
\alpha\geq1
E | |
\phi(p\alpha)/2 |
\not\equiv0\pmod{p\alpha
\phi(n)
The Euler numbers grow quite rapidly for large indices, as they have the lower bound
|E2|>8\sqrt{
n | |
\pi |
}\left(
4n | |
\pie |
\right)2.
The Taylor series of
\secx+\tanx=\tan\left(
\pi4 | |
+ |
x2\right) | |
infty | |
\sum | |
n=0 |
An | |
n! |
xn,
where is the Euler zigzag numbers, beginning with
1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792, 2702765, 22368256, 199360981, 1903757312, 19391512145, 209865342976, 2404879675441, 29088885112832, ...
For all even,
An=
| ||||
(-1) |
En,
An=
| ||||
(-1) |
2n+1\left(2n+1-1\right)Bn+1 | |
n+1 |
,
For every n,
An-1 | \sin{\left( | |
(n-1)! |
n\pi | |
2 |
n-1 | |
\right)}+\sum | |
m=0 |
Am | \sin{\left( | |
m!(n-m-1)! |
m\pi | \right)}= | |
2 |
1 | |
(n-1)! |
.