Epispiral Explained
.There are
n sections if
n is odd and 2
n if
n is even.
It is the polar or circle inversion of the rose curve.
In astronomy the epispiral is related to the equations that explain planets' orbits.
Alternative definition
There is another definition of the epispiral that has to do with tangents to circles:[1]
Begin with a circle.
Rotate some single point on the circle around the circle by some angle
and at the same time by an angle in constant proportion to
, say
for some constant
.
The intersections of the tangent lines to the circle at these new points rotated from that single point for every
would trace out an epispiral.
The polar equation can be derived through simple geometry as follows:
To determine the polar coordinates
of the intersection of the tangent lines in question for some
and
, note that
is halfway between
and
by congruence of triangles, so it is
. Moreover, if the radius of the circle generating the curve is
, then since there is a right-angled triangle (it's right-angled as a tangent to a circle meets the radius at a right angle at the point of tangency) with hypotenuse
and an angle
to which the adjacent leg of the triangle is
, the radius
at the intersection point of the relevant tangents is
. This gives the polar equation of the curve,
for all points
on it.
See also
References
- Book: J. Dennis Lawrence . A catalog of special plane curves . Dover Publications . 1972 . 0-486-60288-5 . 192 . registration .
- https://www.mathcurve.com/courbes2d.gb/epi/epi.shtml
Notes and References
- Web site: construction of the epispiral by tangent lines . 2023-12-02 . Desmos . en.