Energy content of biofuel explained

The energy content of biofuel is the chemical energy contained in a given biofuel, measured per unit mass of that fuel, as specific energy, or per unit of volume of the fuel, as energy density.A biofuel is a fuel produced from recently living organisms. Biofuels include bioethanol, an alcohol made by fermentation—often used as a gasoline additive, and biodiesel, which is usually used as a diesel additive. Specific energy is energy per unit mass, which is used to describe the chemical energy content of a fuel, expressed in SI units as joule per kilogram (J/kg) or equivalent units.[1] Energy density is the amount of chemical energy per unit volume of the fuel, expressed in SI units as joule per litre (J/L) or equivalent units.[2]

Energy and CO2 output of common biofuels

See also: Orders of magnitude (specific energy density). The table below includes entries for popular substances already used for their energy, or being discussed for such use.

The second column shows specific energy, the energy content in megajoules per unit of mass in kilograms, useful in understanding the energy that can be extracted from the fuel.

The third column in the table lists energy density, the energy content per liter of volume, which is useful for understanding the space needed for storing the fuel.

The final two columns deal with the carbon footprint of the fuel. The fourth column contains the proportion of CO2 released when the fuel is converted for energy, with respect to its starting mass, and the fifth column lists the energy produced per kilogram of CO2 produced. As a guideline, a higher number in this column is better for the environment. But these numbers do not account for other green house gases released during burning, production, storage, or shipping. For example, methane may have hidden environmental costs that are not reflected in the table. https://web.archive.org/web/20070922180338/http://www.cypenv.org/worldenv/files/methane.htm

Fuel TypeSpecific energy
(MJ/kg)
Energy Density
(MJ/L)
CO2 Gas made from Fuel Used
(kg/kg)
Energy per CO2
(MJ/kg)
Solid Fuels
Bagasse (Cane Stalks)9.6         ~+40%(C6H10O5)n+15% (C26H42O21)n+15% (C9H10O2)n1.30 7.41 
Chaff (Seed Casings)14.6         [Please insert average composition here] 
Animal Dung/Manurehttp://www.humanitarianinfo.org/darfur/uploads/idp/Cooking%20fuel%20-%20helpdoc%20by%20UNJLC.pdf 10–https://web.archive.org/web/20101126092443/http://home.hccnet.nl/david.dirkse/math/energy.html 15            [Please insert average composition here] 
Dried plants (C6H10O5)n10–16           1.6–16.64      IF 50%(C6H10O5)n+25% (C26H42O21)n+25% (C10H12O3)n1.84 5.44-8.70 
Wood fuel (C6H10O5)n16–21           http://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr113/ch03.pdf 2.56–21.84      IF 45%(C6H10O5)n+25% (C26H42O21)n+30% (C10H12O3)n1.88 8.51–11.17 
Charcoal30           5.4–6.6 85–98% Carbon+VOC+Ash 3.63 8.27 
Liquid Fuels
Pyrolysis oil17.5        21.35      varies varies 
Methanol (CH3-OH)19.9–22.7        15.9        1.37 14.49–16.53 
Ethanol (CH3-CH2-OH)23.4–26.8        18.4–21.2        1.91 12.25–14.03 
Ecalene28.4        22.7        75%C2H6O+9%C3H8O+7%C4H10O+5%C5H12O+4%Hx 2.03 14.02 
Butanol (CH3-(CH2)3-OH)36           29.2        2.37 15.16 
Fat37.656    31.68      C55H104O6 
Biodiesel37.8        33.3–35.7        ~2.85 ~13.26 
Sunflower oil (C18H32O2)https://web.archive.org/web/20070927065241/http://www.pttplc.com/en/document/pdf/biofuel_en.pdf 39.49      33.18      (12% (C16H32O2)+16% (C18H34O2)+71% (LA)+1% (ALA))2.81 14.04 
Castor oil (C18H34O3)https://web.archive.org/web/20111113061656/http://www.castoroil.in/uses/fuel/castor_oil_fuel.html 39.5        33.21      (1% PA+1% SA+89.5% ROA+3% OA+4.2% LA+0.3% ALA)2.67 14.80 
Olive oil (C18H34O2)39.25–39.82      33–33.48      (15% (C16H32O2)+75% (C18H34O2)+9% (LA)+1% (ALA))2.80 14.03 
Gaseous Fuels
Methane (CH4)55–55.7        (Liquefied) 23.0–23.3        (Methane leak exerts 23 × greenhouse effect of CO2) 2.74 20.05–20.30 
Hydrogen (H2)120–142           (Liquefied) 8.5–10.1        (Hydrogen leak slightly catalyzes ozone depletion) 0.0   
Fossil Fuels (comparison)
Coal29.3–33.5        39.8574.43      (Not Counting: CO, NOx, Sulfates & Particulates) ~3.59 ~8.16–9.33 
Crude Oil41.868    28–31.4        (Not Counting: CO, NOx, Sulfates & Particulates) ~3.4  ~12.31 
Gasoline45–48.3        32–34.8        (Not Counting: CO, NOx, Sulfates & Particulates) ~3.30 ~13.64–14.64 
Diesel48.1        40.3        (Not Counting: CO, NOx, Sulfates & Particulates) ~3.4  ~14.15 
Natural Gas38–50           (Liquefied) 25.5–28.7        (Ethane, Propane & Butane Not Counting: CO, NOx & Sulfates) ~3.00 ~12.67–16.67 
Ethane (CH3-CH3)51.9        (Liquefied) ~24.0        2.93 17.71 
Nuclear fuels (comparison)
Uranium -235 (235U)77,000,000           (Pure)1,470,700,000           [Greater for lower [[Uraninite|ore]] conc.(Mining, Refining, Moving)] 0.0  ~55 – ~90
Nuclear fusion (2H -3H)300,000,000           (Liquefied)53,414,377.6        (Sea-Bed Hydrogen-Isotope Mining-Method Dependent) 0.0   
Fuel Cell Energy Storage (comparison)
Direct Methanol4.5466  http://uk.computers.toshiba-europe.com/cgi-bin/ToshibaCSG/news_article.jsp?service=UK&ID=0000005758 3.6        ~1.37 ~3.31 
Proton-Exchange (R&D)up to 5.68      up to 4.5        (IFF Fuel is recycled) 0.0   
Sodium Hydride (R&D)up to 11.13      up to 10.24      (Bladder for Sodium Oxide Recycling) 0.0   
Battery Energy Storage (comparison)
Lead–acid battery0.108    ~0.1        (200–600 Deep-Cycle Tolerance) 0.0   
Nickel–iron batteryhttps://web.archive.org/web/20061213172224/http://www.beutilityfree.com/batterynife/Flyer.pdf 0.0487–0.1127   0.0658–0.1772   (<40y Life)(2k–3k Cycle Tolerance IF no Memory effect) 0.0   
Nickel–cadmium battery0.162–0.288    ~0.24      (1k–1.5k Cycle Tolerance IF no Memory effect) 0.0   
Nickel–metal hydride0.22–0.324    0.36      (300–500 Cycle Tolerance IF no Memory effect) 0.0   
Super-iron battery0.33      http://dataweek.co.za/news.aspx?pklNewsID=597&amp;pklCategoryID=31&amp;pklIssueID=40 (1.5 * NiMH) 0.54      http://www.sciencenews.org/articles/20040320/fob6.asp (~300 Deep-Cycle Tolerance) 0.0   
Zinc–air battery0.396–0.72      https://web.archive.org/web/20060812091528/http://www.electric-fuel.com/evtech/index.shtml 0.5924–0.8442   (Recyclable by Smelting & Remixing, not Recharging) 0.0   
Lithium-ion battery0.54–0.72      0.9–1.9        (3–5 y Life) (500-1k Deep-Cycle Tolerance) 0.0   
Lithium-Ion-Polymer0.65–0.87      (1.2 * Li-Ion)1.08–2.28      (3–5 y Life) (300–500 Deep-Cycle Tolerance) 0.0   
Lithium iron phosphate battery              
DURACELL Zinc–Air1.0584–1.5912   5.148–6.3216   (1–3 y Shelf-life) (Recyclable not Rechargeable) 0.0   
Aluminium battery1.8–4.788    7.56      (10–30 y Life) (3k+ Deep-Cycle Tolerance) 0.0   
PolyPlusBC Li-Aircell3.6–32.4        3.6–17.64      (May be Rechargeable)(Might leak sulfates) 0.0   

Notes

Yields of common crops associated with biofuels production

CropOil
(kg/ha)
Oil
(L/ha)
Oil
(lb/acre)
Oil
(US gal/acre)
Oil per seeds
(kg/100 kg)
Melting Range (°C)Iodine
number
Cetane
number
Oil /
Fat
Methyl
Ester
Ethyl
Ester
Groundnut(Kernel)42
Copra62
Tallow35–42161240–6075
Lard32–36141060–7065
Corn (maize)14517212918-5-10-12115–12453
Cashew nut14817613219
Oats18321716323
Lupine19523217525
Kenaf23027320529
Calendula25630522933
Cotton27332524435(Seed)13-1 – 0-5-8100–11555
Hemp30536327239
Soybean3754463354814-16 – -12-10-12125–14053
Coffee38645934549
Linseed (flax)40247835951-24178
Hazelnuts40548236251
Euphorbia44052439356
Pumpkin seed44953440157
Coriander45053640257
Mustard seed4815724306135
Camelina49058343862
Sesame5856965227450
Safflower65577958583
Rice69682862288
Tung oil tree790940705100-2.5168
Sunflowers80095271410232-18 – -17-12-14125–13552
Cocoa (cacao)8631,026771110
Peanuts8901,059795113393
Opium poppy9781,163873124
Rapeseed1,0001,19089312737-10–5-10–0-12 – -297–11555–58
Olives1,0191,212910129-12 – -6-6-877–9460
Castor beans1,1881,4131,061151(Seed)50-1885
Pecan nuts1,5051,7911,344191
Jojoba1,5281,8181,365194
Jatropha1,5901,8921,420202
Macadamia nuts1,8872,2461,685240
Brazil nuts2,0102,3921,795255
Avocado2,2172,6381,980282
Coconut2,2602,6892,01828720–25-9-68–1070
Chinese Tallow4,700500
Oil palm5,0005,9504,46563520–(Kernal)3620–40-8–21-8–1812–9565–85
Algae95,00010,000
CropOil
(kg/ha)
Oil
(L/ha)
Oil
(lb/acre)
Oil
(US gal/acre)
Oil per seeds
(kg/100 kg)
Melting Range (°C)Iodine
number
Cetane
number
Oil /
Fat
Methyl
Ester
Ethyl
Ester

Notes

See also

Notes and References

  1. Kenneth E. Heselton (2004), "Boiler Operator's Handbook". Fairmont Press, 405 pages.
  2. Web site: The Two cap of SI Units and the SI Prefixes . NIST Guide to the SI . 2012-01-25.