Electron-longitudinal acoustic phonon interaction explained

The electron-longitudinal acoustic phonon interaction is an interaction that can take place between an electron and a longitudinal acoustic (LA) phonon in a material such as a semiconductor.

Displacement operator of the LA phonon

The equations of motion of the atoms of mass M which locates in the periodic lattice is

M

d2
dt2

un=-k0(un-1+un+1-2un)

,

where

un

is the displacement of the nth atom from their equilibrium positions.

Defining the displacement

u\ell

of the

\ell

th atom by

u\ell=x\ell-\ella

, where

x\ell

is the coordinates of the

\ell

th atom and

a

is the lattice constant,

the displacement is given by

ul=Aei

Then using Fourier transform:

Qq=

1
\sqrt{N
} \sum_ u_ e^

and

u\ell=

1
\sqrt{N
} \sum_ Q_ e^.

Since

u\ell

is a Hermite operator,

u\ell=

1
2\sqrt{N
} \sum_ (Q_ e^ + Q^_ e^)
\dagger
a
q

=

q
\sqrt{2M\hbar\omegaq
}(M\omega_Q_-iP_), \; a_ = \frac (M\omega_Q_+iP_)

Qq

is written as

Qq=\sqrt{

\hbar
2M\omegaq
}(a^_+a_)

Then

u\ell

expressed as

u\ell=\sumq\sqrt{

\hbar
2MN\omegaq
} (a_ e^ + a^_ e^)

Hence, using the continuum model, the displacement operator for the 3-dimensional case is

u(r)=\sumq\sqrt{

\hbar
2MN\omegaq

}eq[aqe+

\dagger
a
q

e-i]

,

where

eq

is the unit vector along the displacement direction.

Interaction Hamiltonian

The electron-longitudinal acoustic phonon interaction Hamiltonian is defined as

Hel

Hel=Dac

\deltaV
V

=Dac\rmdivu(r)

,

where

Dac

is the deformation potential for electron scattering by acoustic phonons.[1]

Inserting the displacement vector to the Hamiltonian results to

Hel=Dac\sumq\sqrt{

\hbar
2MN\omegaq

}(ieqq)[aqei-

\dagger
a
q

e-i]

Scattering probability

The scattering probability for electrons from

|k\rangle

to

|k'\rangle

states is

P(k,k')=

2\pi
\hbar

\mid\langlek',q'|Hel|k,q\rangle\mid2\delta[\varepsilon(k')-\varepsilon(k)\mp\hbar\omegaq]

=

2\pi
\hbar

\left|Dac\sumq\sqrt{

\hbar
2MN\omegaq

}(ieqq)\sqrt{nq+

1
2

\mp

1
2

}

1
L3

\intd3r

\ast
u
k'

(r)uk(r)ei\right|2\delta[\varepsilon(k')-\varepsilon(k)\mp\hbar\omegaq]

Replace the integral over the whole space with a summation of unit cell integrations

P(k,k')=

2\pi
\hbar

\left(Dac\sumq\sqrt{

\hbar
2MN\omegaq

}|q|\sqrt{nq+

1
2

\mp

1
2

}I(k,k')\deltak'\right)2\delta[\varepsilon(k')-\varepsilon(k)\mp\hbar\omegaq],

where

I(k,k')=\Omega\int\Omegad3r

\ast
u
k'

(r)uk(r)

,

\Omega

is the volume of a unit cell.

P(k,k')=\begin{cases}

2\pi
\hbar
2
D
ac
\hbar
2MN\omegaq

|q|2nq&(k'=k+q;absorption),\\

2\pi
\hbar
2
D
ac
\hbar
2MN\omegaq

|q|2(nq+1)&(k'=k-q;emission). \end{cases}

See also

References

Notes and References

  1. Book: Hamaguchi, Chihiro . Basic Semiconductor Physics . Graduate Texts in Physics . 2017 . 3 . Springer . 292 . 10.1007/978-3-319-66860-4 . 978-3-319-88329-8 .