The electron-longitudinal acoustic phonon interaction is an interaction that can take place between an electron and a longitudinal acoustic (LA) phonon in a material such as a semiconductor.
The equations of motion of the atoms of mass M which locates in the periodic lattice is
M
d2 | |
dt2 |
un=-k0(un-1+un+1-2un)
where
un
Defining the displacement
u\ell
\ell
u\ell=x\ell-\ella
x\ell
\ell
a
the displacement is given by
ul=Aei
Then using Fourier transform:
Qq=
1 | |
\sqrt{N |
and
u\ell=
1 | |
\sqrt{N |
Since
u\ell
u\ell=
1 | |
2\sqrt{N |
\dagger | |
a | |
q |
=
q | |
\sqrt{2M\hbar\omegaq |
Qq=\sqrt{
\hbar | |
2M\omegaq |
Then
u\ell
u\ell=\sumq\sqrt{
\hbar | |
2MN\omegaq |
Hence, using the continuum model, the displacement operator for the 3-dimensional case is
u(r)=\sumq\sqrt{
\hbar | |
2MN\omegaq |
}eq[aqe+
\dagger | |
a | |
q |
e-i]
where
eq
The electron-longitudinal acoustic phonon interaction Hamiltonian is defined as
Hel
Hel=Dac
\deltaV | |
V |
=Dac\rmdivu(r)
where
Dac
Inserting the displacement vector to the Hamiltonian results to
Hel=Dac\sumq\sqrt{
\hbar | |
2MN\omegaq |
}(ieq ⋅ q)[aqei-
\dagger | |
a | |
q |
e-i]
The scattering probability for electrons from
|k\rangle
|k'\rangle
P(k,k')=
2\pi | |
\hbar |
\mid\langlek',q'|Hel| k,q\rangle\mid2\delta[\varepsilon(k')-\varepsilon(k)\mp\hbar\omegaq]
=
2\pi | |
\hbar |
\left|Dac\sumq\sqrt{
\hbar | |
2MN\omegaq |
}(ieq ⋅ q)\sqrt{nq+
1 | |
2 |
\mp
1 | |
2 |
}
1 | |
L3 |
\intd3r
\ast | |
u | |
k' |
(r)uk(r)ei\right|2\delta[\varepsilon(k')-\varepsilon(k)\mp\hbar\omegaq]
Replace the integral over the whole space with a summation of unit cell integrations
P(k,k')=
2\pi | |
\hbar |
\left(Dac\sumq\sqrt{
\hbar | |
2MN\omegaq |
}|q|\sqrt{nq+
1 | |
2 |
\mp
1 | |
2 |
}I(k,k')\deltak'\right)2\delta[\varepsilon(k')-\varepsilon(k)\mp\hbar\omegaq],
where
I(k,k')=\Omega\int\Omegad3r
\ast | |
u | |
k' |
(r)uk(r)
\Omega
P(k,k')=\begin{cases}
2\pi | |
\hbar |
2 | |
D | |
ac |
\hbar | |
2MN\omegaq |
|q|2nq&(k'=k+q;absorption),\\
2\pi | |
\hbar |
2 | |
D | |
ac |
\hbar | |
2MN\omegaq |
|q|2(nq+1)&(k'=k-q;emission). \end{cases}