Effective fragment potential method explained
The effective fragment potential (EFP) method is a computational approach designed to describe intermolecular interactions and environmental effects.[1] It is a computationally inexpensive means to describe interactions in non-bonded systems.[2] [3] It was originally formulated to describe the solvent effects in complex chemical systems.[4] But it has undergone vast improvements in the past two decades, and is currently used to represent intermolecular interactions (represented as rigid fragments), and in molecular dynamics (MD) simulations as well.[1]
Notes and References
- Gordon. Mark S.. Freitag. Mark A.. Bandyopadhyay. Pradipta. Jensen. Jan H.. Kairys. Visvaldas. Stevens. Walter J.. The Effective Fragment Potential Method: A QM-Based MM Approach to Modeling Environmental Effects in Chemistry. The Journal of Physical Chemistry A. January 2001. 105. 2. 293–307. 10.1021/jp002747h. 2001JPCA..105..293G .
- Web site: libefp: The Effective Fragment Potential method. libefp.github.io. 2017-11-15.
- Web site: Q-Chem 4.3 User's Manual : Effective Fragment Potential Method. www.q-chem.com.
- Book: Gordon. Mark S.. Slipchenko. Lyudmilla. Li. Hui. Jensen. Jan H.. Chapter 10 The Effective Fragment Potential: A General Method for Predicting Intermolecular Interactions. Annual Reports in Computational Chemistry. 1 January 2007. 3. 177–193. Elsevier. 10.1016/S1574-1400(07)03010-1. 9780444530882.