Eddington luminosity explained

The Eddington luminosity, also referred to as the Eddington limit, is the maximum luminosity a body (such as a star) can achieve when there is balance between the force of radiation acting outward and the gravitational force acting inward. The state of balance is called hydrostatic equilibrium. When a star exceeds the Eddington luminosity, it will initiate a very intense radiation-driven stellar wind from its outer layers. Since most massive stars have luminosities far below the Eddington luminosity, their winds are driven mostly by the less intense line absorption.[1] The Eddington limit is invoked to explain the observed luminosities of accreting black holes such as quasars.

Originally, Sir Arthur Eddington took only the electron scattering into account when calculating this limit, something that now is called the classical Eddington limit. Nowadays, the modified Eddington limit also takes into account other radiation processes such as bound–free and free–free radiation interaction.

Derivation

The Eddington limit is obtained by setting the outward radiation pressure equal to the inward gravitational force. Both forces decrease by inverse-square laws, so once equality is reached, the hydrodynamic flow is the same throughout the star.

From Euler's equation in hydrostatic equilibrium, the mean acceleration is zero,

\frac = - \frac - \nabla \Phi = 0

where

u

is the velocity,

p

is the pressure,

\rho

is the density, and

\Phi

is the gravitational potential. If the pressure is dominated by radiation pressure associated with an irradiance

F\rm

,

-\frac = \frac F_\,.

Here

\kappa

is the opacity of the stellar material, defined as the fraction of radiation energy flux absorbed by the medium per unit density and unit length. For ionized hydrogen,

\kappa=\sigma\rm/m\rm

, where

\sigma\rm

is the Thomson scattering cross-section for the electron and

m\rm

is the mass of a proton. Note that

F\rm=d2E/dAdt

is defined as the energy flux over a surface, which can be expressed with the momentum flux using

E=pc

for radiation. Therefore, the rate of momentum transfer from the radiation to the gaseous medium per unit density is

\kappaF\rm/c

, which explains the right-hand side of the above equation.

The luminosity of a source bounded by a surface

S

may be expressed with these relations as

L = \int_S F_ \cdot dS = \int_S \frac \nabla \Phi \cdot dS\,.

Now assuming that the opacity is a constant, it can be brought outside the integral. Using Gauss's theorem and Poisson's equation gives

L = \frac \int_S \nabla \Phi \cdot dS = \frac \int_V \nabla^2 \Phi \, dV = \frac \int_V \rho \, dV = \frac

where

M

is the mass of the central object. This result is called the Eddington luminosity.[2] For pure ionized hydrogen,

\beginL_&=\frac \\&\cong 1.26\times10^\left(\frac\right)= 1.26\times10^\left(\frac\right)= 3.2\times10^4\left(\frac\right) L_\bigodot \end

where

Modot

is the mass of the Sun and

Lodot

is the luminosity of the Sun.

The maximum possible luminosity of a source in hydrostatic equilibrium is the Eddington luminosity. If the luminosity exceeds the Eddington limit, then the radiation pressure drives an outflow.

The mass of the proton appears because, in the typical environment for the outer layers of a star, the radiation pressure acts on electrons, which are driven away from the center. Because protons are negligibly pressured by the analog of Thomson scattering, due to their larger mass, the result is to create a slight charge separation and therefore a radially directed electric field, acting to lift the positive charges, which, under the conditions in stellar atmospheres, typically are free protons. When the outward electric field is sufficient to levitate the protons against gravity, both electrons and protons are expelled together.

Different limits for different materials

The derivation above for the outward light pressure assumes a hydrogen plasma. In other circumstances the pressure balance can be different from what it is for hydrogen.

In an evolved star with a pure helium atmosphere, the electric field would have to lift a helium nucleus (an alpha particle), with nearly 4 times the mass of a proton, while the radiation pressure would act on 2 free electrons. Thus twice the usual Eddington luminosity would be needed to drive off an atmosphere of pure helium.

At very high temperatures, as in the environment of a black hole or neutron star, high-energy photons can interact with nuclei, or even with other photons, to create an electron–positron plasma. In that situation the combined mass of the positive–negative charge carrier pair is approximately 918 times smaller (half of the proton-to-electron mass ratio), while the radiation pressure on the positrons doubles the effective upward force per unit mass, so the limiting luminosity needed is reduced by a factor of ≈ 918×2.

The exact value of the Eddington luminosity depends on the chemical composition of the gas layer and the spectral energy distribution of the emission. A gas with cosmological abundances of hydrogen and helium is much more transparent than gas with solar abundance ratios. Atomic line transitions can greatly increase the effects of radiation pressure, and line-driven winds exist in some bright stars (e.g., Wolf–Rayet and O-type stars).

Super-Eddington luminosities

The role of the Eddington limit in today's research lies in explaining the very high mass loss rates seen in, for example, the series of outbursts of η Carinae in 1840–1860.[3] The regular, line-driven stellar winds can only explain a mass loss rate of around 10−4–10−3 solar masses per year, whereas losses of up to 0.5 solar masses per year are needed to understand the η Carinae outbursts. This can be done with the help of the super-Eddington winds driven by broad-spectrum radiation.

Gamma-ray bursts, novae and supernovae are examples of systems exceeding their Eddington luminosity by a large factor for very short times, resulting in short and highly intensive mass loss rates. Some X-ray binaries and active galaxies are able to maintain luminosities close to the Eddington limit for very long times. For accretion-powered sources such as accreting neutron stars or cataclysmic variables (accreting white dwarfs), the limit may act to reduce or cut off the accretion flow, imposing an Eddington limit on accretion corresponding to that on luminosity. Super-Eddington accretion onto stellar-mass black holes is one possible model for ultraluminous X-ray sources (ULXs).[4] [5]

For accreting black holes, not all the energy released by accretion has to appear as outgoing luminosity, since energy can be lost through the event horizon, down the hole. Such sources effectively may not conserve energy. Then the accretion efficiency, or the fraction of energy actually radiated of that theoretically available from the gravitational energy release of accreting material, enters in an essential way.

Other factors

The Eddington limit is not a strict limit on the luminosity of a stellar object. The limit does not consider several potentially important factors, and super-Eddington objects have been observed that do not seem to have the predicted high mass-loss rate. Other factors that might affect the maximum luminosity of a star include:

Humphreys–Davidson limit

Observations of massive stars show a clear upper limit to their luminosity, termed the Humphreys–Davidson limit after the researchers who first wrote about it.[8] Only highly unstable objects are found, temporarily, at higher luminosities. Efforts to reconcile this with the theoretical Eddington limit have been largely unsuccessful.[9]

The H–D limit for cool supergiants is placed at around 320,000 .[10]

Notes!class=unsortable
References
LGGS J013312.26+310053.3575,0004,055
LGGS J004520.67+414717.3562,000M1ILikely not a member of the Andromeda Galaxy, should be treated with caution in regards to the H–D limit.
LGGS J013339.28+303118.8479,0003,837M1Ia
Stephenson 2 DFK 49390,0004,000K4Another paper estimate a much lower luminosity [11] [12]
HD 269551 A389,0003,800K/M[13]
WOH S170380,0003,750MLarge Magellanic Cloud membership uncertain.
RSGC1-F02363,0003660M2[14]
LGGS J013418.56+303808.6363,0003,837[15]
LGGS J004428.12+415502.9339,000K2I[16]
AH Scorpii331,0003,682M5Ia[17]
SMC 18592309,000[18] - 355,0004,050K5–M0Ia
LGGS J004539.99+415404.1309,000M3I
LGGS J013350.62+303230.3309,0003,800
HV 888302,0003,442[19] –3,500[20] [21] M4Ia
RW Cephei300,0004,400K2Ia-0[22]
LGGS J013358.54+303419.9295,0004,050
GCIRS 7295,0003,600[23] M1I[24]
SP77 21-12295,0004,050K5-M3
EV Carinae288,0003,574[25] M4.5Ia
HV 12463288,0003,550MProbably not a LMC member.
LGGS J003951.33+405303.7288,000
LGGS J013352.96+303816.0282,0003,900
RSGC1-F13282,0003,590
WOH G64282,0003,400M5ILikely the largest known star.[26]
Westerlund 1 W26275,0003,782M0.5-M6Ia[27]
LGGS J004731.12+422749.1275,000
VY Canis Majoris270,0003,490M3–M4.5[28]
Mu Cephei3750M2 Ia[29]
LGGS J004428.48+415130.9269,000M1I
RSGC1-F01263,0003,450M5
LGGS J013241.94+302047.5257,0003,950
HD 143183254,0003,605M3[30]
LMC 145013251,000 - 339,0003,950M2.5Ia–Ib
LMC 25320251,0003,800M

See also

Further reading

External links

Notes and References

  1. 2008AIPC..990..250V . Continuum driven winds from super-Eddington stars. A tale of two limits . A. J. van Marle . S. P. Owocki . N. J. Shaviv . 2008 . AIP Conference Proceedings . 990 . 250–253 . 10.1063/1.2905555. 0708.4207 . 118364586 .
  2. Rybicki, G. B.; Lightman, A. P. Radiative Processes in Astrophysics. New York: J. Wiley & Sons 1979.
  3. 2006ApJ...645L..45S . On the role of continuum driven eruptions in the evolution of very massive stars and population III stars . N. Smith . S. P. Owocki . 2006 . Astrophysical Journal . 645 . 1 . L45–L48 . 10.1086/506523. astro-ph/0606174 . 15424181 .
  4. Bachetti . Matteo . Heida . Marianne . Maccarone . Thomas . Huppenkothen . Daniela . Israel . Gian Luca . Barret . Didier . Brightman . Murray . Brumback . McKinley . Earnshaw . Hannah P. . Forster . Karl . Fürst . Felix . Grefenstette . Brian W. . Harrison . Fiona A. . Jaodand . Amruta D. . Madsen . Kristin K. . 2022-10-01 . Orbital Decay in M82 X-2 . The Astrophysical Journal . 937 . 2 . 125 . 10.3847/1538-4357/ac8d67 . 0004-637X. 2299/25784 . free . free . 2112.00339 . 2022ApJ...937..125B .
  5. Web site: NASA Study Helps Explain Limit-Breaking Ultra-Luminous X-Ray Sources . 2023-04-18 . NASA Jet Propulsion Laboratory (JPL) . en-US.
  6. 2003ApJ...589..960S . Turbulent pressure in the envelopes of yellow hypergiants and luminous blue variables . R. B. Stothers . 2003 . Astrophysical Journal . 589 . 2 . 960–967 . 10.1086/374713. free .
  7. 1992ApJ...388..561A . Photon bubbles: Overstability in a magnetized atmosphere . J. Arons . 1992 . Astrophysical Journal . 388 . 561–578 . 10.1086/171174.
  8. Humphreys . R.M. . Roberta M. Humphreys . Davidson . K. . 1979 . Studies of luminous stars in nearby galaxies. III - Comments on the evolution of the most massive stars in the Milky Way and the Large Magellanic Cloud . . 232 . 409 . 10.1086/157301 . 0004-637X . 1979ApJ...232..409H . en.
  9. Glatzel . W. . Kiriakidis . M. . 15 July 1993 . Stability of massive stars and the Humphreys–Davidson limit . . 263 . 2 . 375–384 . 10.1093/mnras/263.2.375 . free . 1993MNRAS.263..375G .
  10. Davies . Ben . Beasor . Emma R. . 2020-03-21 . The 'red supergiant problem': The upper luminosity boundary of type II supernova progenitors . . 493 . 1 . 468–476 . 10.1093/mnras/staa174 . free . 2001.06020 . 2020MNRAS.493..468D . 0035-8711 . en .
  11. Davies . Ben . Figer . Don F. . Kudritzki . Rolf-Peter . MacKenty . John . Najarro . Francisco . Herrero . Artemio . 2007-12-01 . A Massive Cluster of Red Supergiants at the Base of the Scutum-Crux Arm . The Astrophysical Journal . 671 . 1 . 781–801 . 10.1086/522224 . 0708.0821 . 2007ApJ...671..781D . 0004-637X.
  12. Humphreys . Roberta M. . Helmel . Greta . Jones . Terry J. . Gordon . Michael S. . 2020-09-02 . Exploring the mass-loss histories of the red supergiants . . 160 . 3 . 145 . 1538-3881 . 2008.01108 . 10.3847/1538-3881/abab15 . free. 2020AJ....160..145H .
  13. Massey . Philip . Neugent . Kathryn F. . Ekström . Sylvia . Georgy . Cyril . Meynet . Georges . 2023-01-01 . The time-averaged mass-loss rates of red supergiants as revealed by their luminosity functions in M31 and M33 . . 942 . 2 . 69 . 2211.14147 . 0004-637X . 10.3847/1538-4357/aca665 . free. 2023ApJ...942...69M .
  14. Decin . Leen . Richards . Anita M. S. . Marchant . Pablo . Sana . Hugues . January 2024 . ALMA detection of CO rotational line emission in red supergiant stars of the massive young star cluster RSGC1 -- Determination of a new mass-loss rate prescription for red supergiants . Astronomy & Astrophysics . 681 . A17 . 10.1051/0004-6361/202244635 . 2303.09385 . 2024A&A...681A..17D . 0004-6361.
  15. Drout . Maria R. . Massey . Philip . Meynet . Georges . 2012-04-18 . The yellow and red supergiants of M33 . . 750 . 2 . 97 . 0004-637X . 1203.0247 . 10.1088/0004-637x/750/2/97 . free . 2012ApJ...750...97D .
  16. McDonald . Sarah L.E. . Davies . Ben . Beasor . Emma R. . 2022-01-08 . Red supergiants in M31: the Humphreys–Davidson limit at high metallicity . . 510 . 3 . 3132–3144 . 10.1093/mnras/stab3453 . free . en . 0035-8711 . 2111.13716 .
  17. Arroyo-Torres . B. . Wittkowski . M. . Marcaide . J.M. . Hauschildt . P.H. . June 2013 . The atmospheric structure and fundamental parameters of the red supergiants AH Scorpii, UY Scuti, and KW Sagittarii . . 554 . A76 . 1305.6179 . 0004-6361 . 10.1051/0004-6361/201220920 . free . 2013A&A...554A..76A .
  18. Davies . Ben . Crowther . Paul A. . Beasor . Emma R. . 2018-08-01 . The luminosities of cool supergiants in the Magellanic Clouds, and the Humphreys-Davidson limit revisited . . 478 . 3 . 3138–3148 . 1804.06417 . 2018MNRAS.478.3138D . 10.1093/mnras/sty1302 . free . 0035-8711.
  19. Ren . Yi . Jiang . Bi-Wei . 2020-07-01 . On the Granulation and Irregular Variation of Red Supergiants . The Astrophysical Journal . 898 . 1 . 24 . 10.3847/1538-4357/ab9c17 . free . 2006.06605 . 2020ApJ...898...24R . 0004-637X.
  20. Groenewegen . M. A. T. . Sloan . G. C. . 2018-01-01 . Luminosities and mass-loss rates of Local Group AGB stars and red supergiants . Astronomy and Astrophysics . 609 . A114 . 10.1051/0004-6361/201731089 . 1711.07803 . 2018A&A...609A.114G . 0004-6361.
  21. Kamath . D. . Wood . P. R. . Van Winckel . H. . 2015-12-01 . Optically visible post-AGB stars, post-RGB stars and young stellar objects in the Large Magellanic Cloud . Monthly Notices of the Royal Astronomical Society . 454 . 2 . 1468–1502 . 10.1093/mnras/stv1202 . free . 1508.00670 . 2015MNRAS.454.1468K . 0035-8711.
  22. Jones . Terry Jay . Shenoy . Dinesh . Humphreys . Roberta . 2023-05-11 . The recent mass-loss history of the hypergiant RW Cep . . 7 . 5 . 92 . 2515-5172 . 10.3847/2515-5172/acd37f . free. 2023RNAAS...7...92J .
  23. Paumard . T. . Pfuhl . O. . Martins . F. . Kervella . P. . Ott . T. . Pott . J. -U. . Le Bouquin . J. B. . Breitfelder . J. . Gillessen . S. . Perrin . G. . Burtscher . L. . Haubois . X. . Brandner . W. . 2014-08-01 . GCIRS 7, a pulsating M1 supergiant at the Galactic centre . Physical properties and age . Astronomy and Astrophysics . 568 . A85 . 10.1051/0004-6361/201423991 . 1406.5320 . 2014A&A...568A..85P . 0004-6361.
  24. Guerço . Rafael . Smith . Verne V. . Cunha . Katia . Ekström . Sylvia . Abia . Carlos . Plez . Bertrand . Meynet . Georges . Ramirez . Solange V. . Prantzos . Nikos . Sellgren . Kris . Hayes . Cristian R. . Majewski . Steven R. . 2022-09-13 . Evidence of deep mixing in IRS 7, a cool massive supergiant member of the Galactic nuclear star cluster . . 516 . 2 . 2801–2811 . 10.1093/mnras/stac2393 . free . 0035-8711 . 2208.10529 . en .
  25. van Loon . J. Th. . Cioni . M. -R. L. . Zijlstra . A. A. . Loup . C. . 2005-07-01 . An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars . Astronomy and Astrophysics . 438 . 1 . 273–289 . 10.1051/0004-6361:20042555 . astro-ph/0504379 . 2005A&A...438..273V . 0004-6361.
  26. Ohnaka . K. . Driebe . T. . Hofmann . K.-H. . Weigelt . G. . Wittkowski . M. . 2008-06-01 . Spatially resolved dusty torus toward the red supergiant WOH G64 in the Large Magellanic Cloud . Astronomy & Astrophysics . 484 . 2 . 371–379 . 0004-6361 . 0803.3823 . en . 10.1051/0004-6361:200809469 . free . 2008A&A...484..371O .
  27. Aura . Arévalo . 2019-01-22 . The red supergiants in the supermassive stellar cluster Westerlund 1 . . São Paulo, Brazil . Mestrado em Astronomia . 10.11606/d.14.2019.tde-12092018-161841 . free . en .
  28. Wittkowski . M. . Hauschildt . P.H. . Arroyo-Torres . B. . Marcaide . J.M. . April 2012 . Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry . . 540 . L12 . 1203.5194 . 0004-6361 . 10.1051/0004-6361/201219126 . free . 2012A&A...540L..12W .
  29. Davies . Ben . Beasor . Emma R. . March 2020 . The 'red supergiant problem': the upper luminosity boundary of Type II supernova progenitors . 2020MNRAS.493..468D . . en . 493 . 1 . 468–476 . 10.1093/mnras/staa174 . free . 2001.06020 . 210714093 .
  30. Web site: https://academic.oup.com/mnras/article/529/4/3630/7630209?login=false . 2024-08-14 . academic.oup.com.