En (Lie algebra) explained

Dynkin diagrams
Finite
E3=A2A1
E4=A4
E5=D5
E6
E7
E8
Affine (Extended)
E9 or E or E
Hyperbolic (Over-extended)
E10 or E or E
Lorentzian (Very-extended)
E11 or E
Kac–Moody
E12 or E
...

In mathematics, especially in Lie theory, En is the Kac–Moody algebra whose Dynkin diagram is a bifurcating graph with three branches of length 1, 2 and k, with .

In some older books and papers, E2 and E4 are used as names for G2 and F4.

Finite-dimensional Lie algebras

The En group is similar to the An group, except the nth node is connected to the 3rd node. So the Cartan matrix appears similar, −1 above and below the diagonal, except for the last row and column, have −1 in the third row and column. The determinant of the Cartan matrix for En is .

\left[ \begin{matrix} 2&-1&0\\ -1&2&0\\ 0&0&2\end{matrix}\right]

\left[ \begin{matrix} 2&-1&0&0\\ -1&2&-1&0\\ 0&-1&2&-1\\ 0&0&-1&2\end{matrix}\right]

\left[ \begin{matrix} 2&-1&0&0&0\\ -1&2&-1&0&0\\ 0&-1&2&-1&-1\\ 0&0&-1&2&0\\ 0&0&-1&0&2\end{matrix}\right]

\left[ \begin{matrix} 2&-1&0&0&0&0\\ -1&2&-1&0&0&0\\ 0&-1&2&-1&0&-1\\ 0&0&-1&2&-1&0\\ 0&0&0&-1&2&0\\ 0&0&-1&0&0&2\end{matrix}\right]

\left[ \begin{matrix} 2&-1&0&0&0&0&0\\ -1&2&-1&0&0&0&0\\ 0&-1&2&-1&0&0&-1\\ 0&0&-1&2&-1&0&0\\ 0&0&0&-1&2&-1&0\\ 0&0&0&0&-1&2&0\\ 0&0&-1&0&0&0&2 \end{matrix}\right]

\left[ \begin{matrix} 2&-1&0&0&0&0&0&0\\ -1&2&-1&0&0&0&0&0\\ 0&-1&2&-1&0&0&0&-1\\ 0&0&-1&2&-1&0&0&0\\ 0&0&0&-1&2&-1&0&0\\ 0&0&0&0&-1&2&-1&0\\ 0&0&0&0&0&-1&2&0\\ 0&0&-1&0&0&0&0&2 \end{matrix}\right]

Infinite-dimensional Lie algebras

\left[ \begin{matrix} 2&-1&0&0&0&0&0&0&0\\ -1&2&-1&0&0&0&0&0&0\\ 0&-1&2&-1&0&0&0&0&-1\\ 0&0&-1&2&-1&0&0&0&0\\ 0&0&0&-1&2&-1&0&0&0\\ 0&0&0&0&-1&2&-1&0&0\\ 0&0&0&0&0&-1&2&-1&0\\ 0&0&0&0&0&0&-1&2&0\\ 0&0&-1&0&0&0&0&0&2 \end{matrix}\right]

\left[ \begin{matrix} 2&-1&0&0&0&0&0&0&0&0\\ -1&2&-1&0&0&0&0&0&0&0\\ 0&-1&2&-1&0&0&0&0&0&-1\\ 0&0&-1&2&-1&0&0&0&0&0\\ 0&0&0&-1&2&-1&0&0&0&0\\ 0&0&0&0&-1&2&-1&0&0&0\\ 0&0&0&0&0&-1&2&-1&0&0\\ 0&0&0&0&0&0&-1&2&-1&0\\ 0&0&0&0&0&0&0&-1&2&0\\ 0&0&-1&0&0&0&0&0&0&2 \end{matrix}\right]

Root lattice

The root lattice of En has determinant, and can be constructed as the lattice of vectors in the unimodular Lorentzian lattice Zn,1 that are orthogonal to the vector of norm = .

E

See main article: E7½.

Landsberg and Manivel extended the definition of En for integer n to include the case n = . They did this in order to fill the "hole" in dimension formulae for representations of the En series which was observed by Cvitanovic, Deligne, Cohen and de Man. E has dimension 190, but is not a simple Lie algebra: it contains a 57 dimensional Heisenberg algebra as its nilradical.

See also

References

Further reading