Dysesthesia Explained

Dysesthesia
Synonyms:dysaesthesia
Field:Neurology

Dysesthesia is an unpleasant, abnormal sense of touch. Its etymology comes from the Greek word "dys," meaning "bad," and "aesthesis," which means "sensation" (abnormal sensation). It often presents as pain[1] but may also present as an inappropriate, but not discomforting, sensation. It is caused by lesions of the nervous system, peripheral or central, and it involves sensations, whether spontaneous or evoked, such as burning, wetness, itching, electric shock, and pins and needles. Dysesthesia can include sensations in any bodily tissue, including most often the mouth, scalp, skin, or legs.

It is sometimes described as feeling like acid under the skin. Burning dysesthesia might accurately reflect an acidotic state in the synapses and perineural space. Some ion channels will open to a low pH, and the acid sensing ion channel has been shown to open at body temperature, in a model of nerve injury pain. Inappropriate, spontaneous firing in pain receptors has also been implicated as a cause of dysesthesia.

People with dysesthesia can become incapacitated with pain, despite no apparent damage to the skin or other tissue.

Types

Dysesthesia can generally be described as a class of neurological disorders. It can be further classified depending on where it manifests in the body, and by the type of sensation that it provokes.

Cutaneous dysesthesia is characterized by discomfort or pain from touch to the skin by normal stimuli, including clothing. The unpleasantness can range from a mild tingling to blunt, incapacitating pain.

Scalp dysesthesia is characterized by pain or burning sensations on or under the surface of the cranial skin. Scalp dysesthesia may also present as excessive itching of the scalp.

Occlusal dysesthesia, or "phantom bite," is characterized by the feeling that the bite is "out of place" (occlusal dystopia) despite any apparent damage or instability to dental or oromaxillofacial structures or tissue. Phantom bite often presents in patients that have undergone otherwise routine dental procedures. Short of compassionate counseling, evidence for effective treatment regimes is lacking.

Presentation

Chronic anxiety is often associated with dysesthesia due to extreme stress.[2] Patients with this anxiety may experience numbness or tingling in the face. In one study, those patients that were examined psychologically had symptoms of anxiety, depression, obsessive-compulsive personality disorder, or somatic symptom disorder.

Causes

Diagnosis

Differential diagnosis

Although dysesthesia is similar to phantom limb syndrome, they should not be confused. In phantom limb, the sensation is present in an amputated or absent limb, while dysesthesia refers to discomfort or pain in a tissue that has not been removed or amputated. The dysesthetic tissue may also not be part of a limb, but part of the body, such as the abdomen. The majority of individuals with both phantom limb and dysesthesia experience painful sensations.

Phantom pain refers to dysesthetic feelings in individuals who are paralyzed or who were born without limbs. It is caused by the improper innervation of the missing limbs by the nerves that would normally innervate the limb. Dysesthesia is caused by damage to the nerves themselves, rather than by an innervation of absent tissue.

Dysesthesia should not be confused with anesthesia or hypoesthesia, which refer to a loss of sensation, or paresthesia which refers to a distorted sensation. Dysesthesia is distinct in that it can, but not necessarily, refer to spontaneous sensations in the absence of stimuli. In the case of an evoked dysesthetic sensation, such as by the touch of clothing, the sensation is characterized not simply by an exaggeration of the feeling, but rather by a completely inappropriate sensation such as burning.

Treatment

Daily oral muscle physical therapy, or the administration of antidepressants have been reported as effective therapy for occlusal dysesthesia patients. Tooth grinding, and the replacement or removal of all dental work should be avoided in patients with occlusal dysesthesia, despite the frequent requests for further surgery often made by these patients.

Antidepressants are also often prescribed for scalp dysesthesia.

Prakash et al. found that many patients with burning mouth syndrome (BMS), one variant of occlusal dysesthesia, also report painful sensations in other parts of the body. Many of the patients with BMS met the classification of restless leg syndrome (RLS). About half of these patients also had a family history of RLS. These results suggest that some BMS symptoms may be caused by the same pathway as RLS in some patients, indicating that dopaminergic drugs regularly used to treat RLS may be effective in treating BMS as well.

Research

There are a number of hypotheses regarding the basis of occlusal dysesthesia. Some researchers believe the disorder is a psychological one, while others believe it to be a psychosomatic disorder.[7] Joseph Marbach hypothesized that the symptoms were rooted in psychiatric disorders. Marbach suggested that occlusal dysesthesia would occur in patients with underlying psychological problems (such as schizophrenia) after having undergone dental treatment. More recently, two studies have found that occlusal dysesthesia is associated with somatoform disorders in which the patients obsess over the oral sensations.

Similarly, Marbach later proposed that occlusal dysesthesia may be caused by the brain “talking to itself,” causing abnormal oral sensations in the absence of external stimuli. According to this model, the symptoms of dysesthesia are catalyzed by dental “amputation,” for example the extraction of a tooth, whereby the brain loses the ability to distinguish between its memory of the bite and the actual, new bite. The patient, unable to recognize his or her own bite, becomes especially attentive to these perceived oral discrepancies. Finally and most recently, Greene and Gelb suggested that instead of having a psychological root, dysesthesia may be caused by a false signal being sent from the peripheral nervous system to the central nervous system. However, the reviewers note that no method exists for determining sensor nerve thresholds, and so sensory perception in the mouth is often measured by interdental thickness discrimination (ITD), or the ability to differentiate between the sizes of objects (thin blocks) placed between teeth. In one study, occlusal dysesthesia patients showed greater ability to differentiate these thicknesses than control, healthy individuals, but these differences were not statistically significant.

Studies

See also

References

[14]

Further reading

Notes and References

  1. Web site: IASP Pain Terminology. https://web.archive.org/web/20080512061229/http://www.iasp-pain.org/AM/Template.cfm?Section=General_Resource_Links&Template=%2FCM%2FHTMLDisplay.cfm&ContentID=3058. 2008-05-12.
  2. Web site: How to Stop Chronic Anxiety From Dysesthesia. www.calmclinic.com.
  3. Klempner, M. S., Hu, L. T., Evans, J., Schmid, C. H., Johnson, G. M., Trevino, R. P., . . . Weinstein, A. (2001). Two controlled trials of antibiotic treatment in patients with persistent symptoms and a history of Lyme disease. New England Journal of Medicine, 345(2), 85-92.
  4. Web site: Understanding Dysesthesia in Multiple Sclerosis. about.com. 2009-12-06. 2016-03-03. https://web.archive.org/web/20160303223735/http://ms.about.com/od/signssymptoms/g/dysesthesia.htm. dead.
  5. Chow, G. C. S., Clarke, J. T. R., & Banwell, B. L. (2001). Late-onset GM2 gangliosidosis presenting as burning dysesthesias. Pediatric Neurology, 25(1).
  6. del Pino BM . Feb 23, 2010 . NCI Cancer Bulletin . 7 . 4 . 6 . Chemotherapy-induced Peripheral Neuropathy . dead. https://web.archive.org/web/20111211105234/http://www.cancer.gov/aboutnci/ncicancerbulletin/archive/2010/022310/page6 . 2011-12-11 .
  7. Hara, E. S., Matsuka, Y., Minakuchi, H., Clark, G. T., & Kuboki, T. (2012). Occlusal dysesthesia: a qualitative systematic review of the epidemiology, aetiology and management. Journal of Oral Rehabilitation, 39(8): 630-638. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2842.2012.02300.x/pdf
  8. Bennett, G. J., & Xie, Y. K. (1988). A PERIPHERAL MONONEUROPATHY IN RAT THAT PRODUCES DISORDERS OF PAIN SENSATION LIKE THOSE SEEN IN MAN. Pain, 33(1).
  9. Djouhri, L., Fang, X., Koutsikou, S., & Lawson, S. N. (2012). Partial nerve injury induces electrophysiological changes in conducting (uninjured) nociceptive and nonnociceptive DRG neurons: Possible relationships to aspects of peripheral neuropathic pain and paresthesias. Pain, 153(9).
  10. Hoss, D., & Segal, S. (1998). Scalp dysesthesia. Archives of Dermatology, 134(3). doi: 10.1001/archderm.134.3.327
  11. Landerholm, A. H., & Hansson, P. T. (2011). Mechanisms of dynamic mechanical allodynia and dysesthesia in patients with peripheral and central neuropathic pain. European Journal of Pain, 15(5).
  12. Ochoa, J. L., & Torebjork, H. E. (1980). PARAESTHESIAE FROM ECTOPIC IMPULSE GENERATION IN HUMAN SENSORY NERVES. Brain, 103(DEC).
  13. Tsukiyama, Y., Yamada, A., Kuwatsuru, R., & Koyano, K. (2012). Bio-psycho-social assessment of occlusal dysaesthesia patients. Journal of Oral Rehabilitation, 39(8).
  14. https://masterhealth.care/articles/dysesthesia-ms-pain-abnormal-sensations/ Dysesthesia: 9 ways to reduce MS pain & abnormal sensation