Dynamic tonality explained

Dynamic tonality is a paradigm for tuning and timbre which generalizes the special relationship between just intonation, and the harmonic series to apply to a wider set of pseudo-just tunings and related[1] pseudo-harmonic timbres.[2]

The main limitation of dynamic tonality is that it is best used with compatible isomorphic keyboard instruments and compatible synthesizers, or with voices and instruments whose sounds are transformed in real time via compatible digital tools.[3]

The static timbre paradigm

Harmonic timbres

A vibrating string, a column of air, and the human voice all emit a specific pattern of partials corresponding to the harmonic series. The degree of correspondence varies, depending on the physical characteristics of the emitter. "Partials" are also called "harmonics" or "overtones." Each musical instrument's unique sound is called its timbre, so an instrument's timbre can be called a "harmonic timbre" if its partials correspond closely to the harmonic series.

Just tunings

Just intonation is a system of tuning that adjusts a tuning's notes to maximize their alignment with a harmonic timbre's partials. This alignment maximizes the consonance of music's tonal intervals.

Temperament

The harmonic series and just intonation share an infinitely complicated – or infinite rank – pattern that is determined by the infinite series of prime numbers. A temperament is an attempt to reduce this complexity by mapping this rank- pattern to a simpler, finite-rank pattern.

Throughout history, the pattern of notes in a tuning could be altered (that is, "tempered") by humans but the pattern of partials sounded by an acoustic musical instrument was largely determined by the physics of their sound production. The resulting misalignment between "pseudo-just" tempered tunings, and untempered timbres, made temperament "a battleground for the great minds of Western civilization".[4] [5] [6] This misalignment, in any tuning that is not fully Just (and hence infinitely complex), is the defining characteristic of any static timbre paradigm.

Instruments

Many of the pseudo-just temperaments proposed during this "temperament battle" were rank 2 (two-dimensional) – such as quarter-comma meantone – that provided more than 12 notes per octave. However, the standard piano-like keyboard is only rank 1 (one-dimensional), affording at most 12 notes per octave. Piano-like keyboards affording more than 12 notes per octave were developed by Vicentino, Colonna, Mersenne, Huygens, and Newton, but were all considered too cumbersome / too difficult to play.

The dynamic tonality paradigm

The goal of dynamic tonality is to enable consonance beyond the range of tunings and temperaments in which harmonic timbres have traditionally been played. Dynamic tonality delivers consonance by tempering the intervals between notes (into "pseudo-just tunings") and also tempering the intervals between partials (into "pseudo-harmonic timbres") through digital synthesis and/or processing. Aligning the notes of a pseudo-just tuning's notes and the partials of a pseudo-harmonic timbre (or vice versa) enables consonance.

The defining characteristic of dynamic tonality is that a given rank-2 temperament (as defined by a period, a generator, and a comma sequence)[7] is used to generate, in real time during performance, the same set of intervals among:

  1. A pseudo-just tuning's notes;
  2. A pseudo-harmonic timbre's partials; and
  3. An isomorphic keyboard's note-controlling buttons.

Generating all three from the same temperament solves two problems and creates (at least) three opportunities.

  1. Dynamic tonality solves the problem of maximizing the consonance[8] of tempered tunings, and extends that solution across a wider range of tunings than were previously considered to be consonant.
  2. Dynamic Tonality solves[9] the "cumbersome" problem cited by Isacoff by generating a keyboard that is (a) isomorphic with its temperament (in every octave, key, and tuning), and yet is (b) tiny (the size of the keyboards on squeezeboxes such as concertinas, bandoneons, and bayans). The creators of dynamic tonality could find no evidence that any of Isacoff's Great Minds knew about isomorphic keyboards or recognized the connection between the rank of a temperament and the dimensions of a keyboard.
  3. Dynamic tonality gives musicians the opportunity to explore new musical effects (see "New musical effects," below).
  4. Dynamic tonality creates the opportunity for musicians to explore rank-2 temperaments other than the syntonic temperament (such as schismatic, Magic, and miracle) easily and with maximum consonance.
  5. Dynamic tonality creates the opportunity for a significant increase in the efficiency of music education.[10]

A rank-2 temperament defines a rank-2 (two-dimensional) note space, as shown in video 1 (note space).

The syntonic temperament is a rank-2 temperament defined by its period (just perfect octave,), its generator (just perfect fifth,) and its comma sequence (which starts with the syntonic comma,, which names the temperament). The construction of the syntonic temperament's note-space is shown in video 2 (Syntonic note-space).

The valid tuning range of the syntonic temperament is show in Figure 1.

A keyboard that is generated by a temperament is said to be isomorphic with that temperament (from the Greek "iso" meaning "same," and "morph" meaning "shape"). Isomorphic keyboards are also known as generalized keyboards. Isomorphic keyboards have the unique properties of transpositional invariance[11] and tuning invariance when used with rank-2 temperaments of just intonation. That is, such keyboards expose a given musical interval with "the same shape" in every octave of every key of every tuning of such a temperament.

Of the various isomorphic keyboards now known (e.g., the Bosanquet, Janko, Fokker, and Wesley), the Wicki-Hayden keyboard is optimal for dynamic tonality across the entire valid 5-limit tuning range of the syntonic temperament. The isomorphic keyboard shown in this article's videos is the Wicki-Hayden keyboard, for that reason. It also has symmetries related to Diatonic Set Theory, as shown in Video 3 (Same shape).

The Wicki-Hayden keyboard embodies a tonnetz, as shown in video 4 (tonnetz). The tonnetz is a lattice diagram representing tonal space first described by Euler (1739),[12] which is a central feature of Neo-Riemannian music theory.

Non-Western tunings

The endpoints of the valid 5 limit tuning range of the syntonic temperament, shown in Figure 1, are:

Dynamic timbres

The partials of a pseudo-harmonic timbre are digitally mapped, as defined by a temperament, to specific notes of a pseudo – just tuning. When the temperament's generator changes in width, the tuning of the temperament's notes changes, and the partials change along with those notes – yet their relative position remains invariant on the temperament-generated isomorphic keyboard. The frequencies of notes and partials change with the generator's width, but the relationships among the notes, partials, and note-controlling buttons remain the same: as defined by the temperament. The mapping of partials to the notes of the syntonic temperament is animated in video 5.

Dynamic tuning

On an isomorphic keyboard, any given musical structure—a scale, a chord, a chord progression, or an entire song—has exactly the same fingering in every tuning of a given temperament. This allows a performer to learn to play a song in one tuning of a given temperament and then to play it with exactly the same finger-movements, on exactly the same note-controlling buttons, in every other tuning of that temperament. See video 3 (Same shape).

For example, one could learn to play Rodgers and Hammerstein's "Do-Re-Mi" song in its original 12 tone equal temperament and then play it with exactly the same finger-movements, on exactly the same note-controlling buttons, while smoothly changing the tuning in real time across the syntonic temperament's tuning continuum.

The process of digitally tempering a pseudo-harmonic timbre's partials to align with a tempered pseudo-just tuning's notes is shown in video 6 (Dynamic tuning & timbre).

New musical effects

Dynamic Tonality enables two new kinds of real-time musical effects:

Tuning-based effects

Dynamic Tonality's novel tuning-based effects[14] include:

Timbre-based effects

The developers of dynamic tonality have invented novel vocabulary to describe the effects on timbre by raising or lowering the relative amplitude of partials.[15] Their new terms include primeness, conicality, and richness, with primeness being further subdivided into twoness, threeness, fiveness etc.:

Primeness: The overall term primeness refers to the level to which overtones or partials of the fundamental tone whose harmonic order is a multiple of some prime factor; for example:

Other partials' orders may be factorised by several primes: Partial 12 can be factored by both 2 and 3, and so shows both twoness and threeness; partial 15 can be factored by both 3 and 5, and so shows both threeness and fiveness. If yet another appropriately-sized comma is introduced into the syntonic temperament's sequence of commas and semitones it can provide for a 7th order/ partial (see video 5), and thus enable sevenness.

Consideration of primeness of a sound is meant to enable a musician to thoughtfully manipulate a timber by enhancing or reducing its twoness, threeness, fiveness, ..., primeness.

Conicality: Specifically turning down twoness produces timbre whose partials are predominantly odd order – a “hollow or nasal” sound[16] reminiscent of cylindrical closed bore instruments (an ocarina, for example, or a few types of organ pipes). As the twoness increases, the even partials increase, creating a sound more reminiscent of open cylindrical bore instruments (concert flutes, for example, or shakuhachi), or conical bore instruments (bassoons, oboes, saxophones). This perceptual feature is called conicality.
Richness: The term richness is close to common use for describing sound; in this context, it means the extent to which a timbre's spectrum contains partials whose orders include many different prime factors: The more prime factors are present in the orders of a timber's loud partials, the more rich the sound is. When richness is at minimum, only the fundamental sound is present; as it is increased, the twoness is increased, then the threeness, then the fiveness, etc.

Superset of static timbre paradigm

One can use Dynamic Tonality to temper only the tuning of notes, without tempering timbres, thus embracing the Static Timbre Paradigm.

Similarly, using a synthesizer control such as the Tone Diamond,[17] a musician can opt to maximize regularity, harmonicity, or consonance – or trade off among them in real time (with some of the jammer's 10 degrees of freedom mapped to the tone diamond's variables), with consistent fingering. This enables musicians to choose tunings that are regular or irregular, equal or non-equal, major-biased or minor-biased – and enables the musician to slide smoothly among these tuning options in real time, exploring the emotional affect of each variation and the changes among them.

Compared to microtonality

Imagine that the valid tuning range of a temperament (as defined in Dynamic Tonality) is a string, and that individual tunings are beads on that string. The microtonal community has typically focused primarily on the beads, whereas Dynamic Tonality is focused primarily on the string. Both communities care about both beads and strings; only their focus and emphasis differ.

Example: C2ShiningC

An early example of dynamic tonality can be heard in the song "C2ShiningC".[18]

This sound example contains only one chord, C, played throughout, yet a sense of harmonic tension is imparted by a tuning progression and a timbre progression, as follows:


harmonic
  
harmonic
  
consonant
  
consonant

As the tuning changes, the pitches of all notes except the tonic change, and the widths of all intervals except the octave change; however, the relationships among the intervals (as defined by the syntonic temperament's period, generator, and comma sequence) remain invariant (that is, constant; not varying) throughout. This invariance among a temperament's interval relationships is what makes invariant fingering (on an isomorphic keyboard) possible, even while the tuning is changing. In the syntonic temperament, the tempered major third (M3) is as wide as four tempered perfect fifths (p5‑s) minus two octaves – so the M3's width changes across the tuning progression

Thus, the tuning progression's widening of the C's M3 from a nearly just major third in to a slightly flat perfect fourth in creates the harmonic tension of a within a C chord, which is relieved by the return to . This example proves that dynamic tonality offers new means of creating and then releasing harmonic tension, even within a single chord.

This analysis is presented in C as originally intended, despite the recording actually being in D.

History

Dynamic tonality was developed primarily by a collaboration between William Sethares, Andrew Milne, and James ("Jim") Plamondon.

The latter formed Thumtronics Pty Ltd. to develop an expressive, tiny, electronic Wicki-Hayden keyboard instrument: Thumtronics' "Thummer."[19] [20] [21] [22] [23] The generic name for a Thummer-like instrument is "jammer." With two thumb-sticks and internal motion sensors, a jammer would afford 10 degrees of freedom, which would make it the most expressive polyphonic instrument available. Without the expressive potential of a jammer, musicians lack the expressive power needed to exploit dynamic tonality in real time, so dynamic tonality's new tonal frontiers remain largely unexplored.

External links

Notes and References

  1. Relating Tuning and Timbre . Experimental Musical Instruments . W.A. . Sethares . 1993 .
  2. Tuning Continua and Keyboard Layouts . Journal of Mathematics and Music . Andrew . Milne . William . Sethares . James . Plamondon . 2 . 1 . 1–19 . 10.1080/17459730701828677 . 29 Aug 2008 . 1549755 . Alt URL
  3. William . Sethares . Milne, A. . Tiedje, S. . Prechtl, A. . Plamondon, J. . 2009 . Spectral Tools for Dynamic Tonality and Audio Morphing . Computer Music Journal . 33 . 2 . 71–84 . 2009-09-20 . 10.1162/comj.2009.33.2.71 . 216636537 . "Smooth changes of tuning and timbre are at the core of C2ShiningC … found on the Spectral Tools home page." . 13 .
  4. Book: Isacoff, Stuart . 2003 . Knopf . Temperament: How music became a battleground for the great minds of western civilization . 978-0375403552 .
  5. Book: Barbour, J.M. . 2004 . Tuning and Temperament: A historical survey . Courier Corporation . 978-0-486-43406-3 . Google books.
  6. Book: Duffin, R.W. . 2006 . How Equal Temperament Ruined Harmony (and Why you should care) . W. W. Norton & Company . 978-0-393-06227-4 . Google books.
  7. A. . Milne . W.A. . Sethares . William Sethares . J. . Plamondon . Winter 2007 . Isomorphic controllers and dynamic tuning: Invariant fingering over a tuning continuum . . 31 . 4 . 15–32 . 10.1162/comj.2007.31.4.15 . free . 27906745 .
  8. Book: Sethares, W.A. . William Sethares . 2004 . Tuning, Timbre, Spectrum, Scale . Springer . 978-1852337971 . Google books.
  9. Jim Plamondon (upload) . Motion sensing 1 . video . Thrumtronics . . dead . 2024-01-20 . 2024-01-13 . https://web.archive.org/web/20240113193717/https://www.youtube.com/watch?v=lWK1d9fzlVQ&amp%3Bfeature=youtu.be .
  10. Jim . Plamondon . Andrew J. . Milne . William . Sethares . William Sethares . 2009 . Sight-reading music theory: A thought experiment on improving pedagogical efficiency . Technical Report . Thumtronics Pty Ltd . 11 May 2020.
  11. Keislar . D. . April 1988 . History and Principles of Microtonal Keyboard Design . Report No. STAN-M-45 . Center for Computer Research in Music and Acoustics . . Paolo Alto, CA . ccrma.stanford.edu.
  12. Book: Euler, Leonhard . Leonhard Euler . 1739 . la . Tentamen novae theoriae musicae ex certissismis harmoniae principiis dilucide expositae . 147 . Saint Petersburg Academy.
  13. Book: Jessup, L. . 1983 . The Mandinka Balafon: An introduction with notation for teaching . Xylo Publications.
  14. Jim . Plamondon . Andrew J. . Milne . William . Sethares . William Sethares . 2009 . Dynamic tonality: Extending the framework of tonality into the 21st century . Proceedings of the Annual Conference of the South Central Chapter of the College Music Society .
  15. A. . Milne . W. . Sethares . William Sethares . J. . Plamondon . 2006 . X System . Technical Report . Thumtronics Inc. . 2020-05-02. The descriptions of primeness, conicality, and richness were copied from this source, which is available under a Creative Commons Attribution-ShareAlike 3.0 Unported license and the GNU Free Documentation License.
  16. Book: Helmholtz . H. . Hermann von Helmholtz . Ellis . A.J. . Alexander J. Ellis . 1885 . On the Sensations of Tone as a Physiological Basis for a Theory of Music . 2nd English . A.J. . Ellis . Alexander J. Ellis . London, UK . Longmans, Green, and Co. . 52 . 2020-05-13 . archive.org.
  17. Milne . A. . April 2002 . The Tone Diamond . Technical report . . . academia.edu.
  18. C2ShiningC . music recording . W.A. Sethares (provider) . personal academic website . . wisc.edu.
  19. News: Jurgensen . John . 7 December 2007 . The soul of a new instrument . . 26 July 2021 .
  20. Beschizza . Rob . March 2007 . The Thummer: A musical instrument for the 21st century? . . 26 July 2021 .
  21. van Buskirk . Eliot . 25 September 2007 . Thummer musical instrument combines buttons, Wii-style motion detection . . 26 July 2021 .
  22. Web site: Merrett . Andy . 26 September 2007 . Thummer: New concept musical instrument based on QWERTY keyboard and motion detection . Tech Digest . 26 July 2021 .
  23. Web site: Strauss . Paul . 25 September 2007 . Thummer: This synthesizer is all about expression . TechnaBob . 26 July 2021 .