Duality gap explained
In optimization problems in applied mathematics, the duality gap is the difference between the primal and dual solutions. If
is the optimal dual value and
is the optimal primal value then the duality gap is equal to
. This value is always greater than or equal to 0 (for minimization problems). The duality gap is zero if and only if
strong duality holds. Otherwise the gap is strictly positive and
weak duality holds.
[1] In general given two dual pairs separated locally convex spaces
and
. Then given the function
, we can define the primal problem by
If there are constraint conditions, these can be built into the function
by letting
where
is the
indicator function. Then let
F:X x Y\toR\cup\{+infty\}
be a
perturbation function such that
. The
duality gap is the difference given by
infx[F(x,0)]-
[-F*(0,y*)]
where
is the
convex conjugate in both variables.
[2] [3] [4] In computational optimization, another "duality gap" is often reported, which is the difference in value between any dual solution and the value of a feasible but suboptimal iterate for the primal problem. This alternative "duality gap" quantifies the discrepancy between the value of a current feasible but suboptimal iterate for the primal problem and the value of the dual problem; the value of the dual problem is, under regularity conditions, equal to the value of the convex relaxation of the primal problem: The convex relaxation is the problem arising replacing a non-convex feasible set with its closed convex hull and with replacing a non-convex function with its convex closure, that is the function that has the epigraph that is the closed convex hull of the original primal objective function.[5] [6] [7] [8] [9] [10] [11] [12] [13]
Notes and References
- Book: Techniques of Variational Analysis. Borwein. Jonathan. Zhu. Qiji. 2005. Springer. 978-1-4419-2026-3.
- Book: Duality in Vector Optimization. Radu Ioan Boţ. Gert Wanka. Sorin-Mihai Grad. 2009. Springer. 978-3-642-02885-4.
- Book: Overcoming the failure of the classical generalized interior-point regularity conditions in convex optimization. Applications of the duality theory to enlargements of maximal monotone operators. Ernö Robert Csetnek. 2010. Logos Verlag Berlin GmbH. 978-3-8325-2503-3.
- Book: Zălinescu, C.. Convex analysis in general vector spaces. limited. World Scientific Publishing Co. Inc. River Edge, NJ. 2002. 106–113. 981-238-067-1. 1921556.
- Book: Ahuja, Ravindra K. . Ravindra K. Ahuja . Magnanti, Thomas L. . Thomas L. Magnanti . Orlin, James B. . James B. Orlin . Network Flows: Theory, Algorithms and Applications . Prentice Hall . 1993 . 0-13-617549-X .
- Book: Bertsekas . Dimitri P. . 1999 . Nonlinear Programming . 2nd . Athena Scientific . 1-886529-00-0 .
- Book: Bonnans . J. Frédéric . Gilbert . J. Charles . Lemaréchal . Claude . Sagastizábal . Claudia A.. Claudia Sagastizábal . Numerical optimization: Theoretical and practical aspects . Second revised ed. of translation of 1997 French . Universitext . Springer-Verlag . Berlin . 2006 . xiv+490 . 3-540-35445-X . 10.1007/978-3-540-35447-5 . 2265882 . Claude Lemaréchal .
- Book: Hiriart-Urruty . Jean-Baptiste . Lemaréchal . Claude . Convex analysis and minimization algorithms, Volume I: Fundamentals . Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] . 305 . Springer-Verlag . Berlin . 1993 . xviii+417 . 3-540-56850-6 . 1261420 .
- Book: Hiriart-Urruty . Jean-Baptiste . Lemaréchal . Claude . XII. Abstract Duality for Practitioners . Convex analysis and minimization algorithms, Volume II: Advanced theory and bundle methods . 1993 . 10.1007/978-3-662-06409-2_4 . Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] . 306 . Springer-Verlag . Berlin . xviii+346 . 3-540-56852-2 . 1295240. Claude Lemaréchal .
- Book: Lasdon, Leon S. . Optimization theory for large systems . Dover Publications, Inc. . Mineola, New York . 2002 . Reprint of the 1970 Macmillan . xiii+523 . 1888251 . 978-0-486-41999-2 .
- Book: Lemaréchal, Claude . Lagrangian relaxation . 112–156 . Computational combinatorial optimization: Papers from the Spring School held in Schloß Dagstuhl, May 15–19, 2000 . Jünger, Michael . Naddef, Denis . Lecture Notes in Computer Science (LNCS) . 2241 . Springer-Verlag . Berlin . 2001 . 3-540-42877-1 . 1900016 . 10.1007/3-540-45586-8_4 . 9048698 . Claude Lemaréchal .
- Book: Minoux, Michel . Michel Minoux . Mathematical programming: Theory and algorithms . Egon Balas (forward); Steven Vajda (trans) from the (1983 Paris: Dunod) French . A Wiley-Interscience Publication. John Wiley & Sons, Ltd. . Chichester . 1986 . xxviii+489 . 0-471-90170-9 . 868279 . (2008 Second ed., in French: Programmation mathématique : Théorie et algorithmes, Éditions Tec & Doc, Paris, 2008. xxx+711 pp. .) .
- Book: Shapiro, Jeremy F.. Mathematical programming: Structures and algorithms. Wiley-Interscience [John Wiley & Sons]. New York. 1979. xvi+388. 0-471-77886-9. 544669.