In mathematics, a dual wavelet is the dual to a wavelet. In general, the wavelet series generated by a square-integrable function will have a dual series, in the sense of the Riesz representation theorem. However, the dual series is not itself in general representable by a square-integrable function.
Given a square-integrable function
\psi\inL2(R)
\{\psijk\}
\psijk(x)=2j/2\psi(2jx-k)
for integers
j,k\inZ
Such a function is called an R-function if the linear span of
\{\psijk\}
L2(R)
0<A\leqB<infty
A\Vertcjk
2 | |
\Vert | |
l2 |
\leq\Vert
infty | |
\sum | |
jk=-infty |
cjk\psijk
2 | |
\Vert | |
L2 |
\leqB\Vertcjk
2 | |
\Vert | |
l2 |
for all bi-infinite square summable series
\{cjk\}
\Vert ⋅
\Vert | |
l2 |
\Vertcjk
2 | |
\Vert | |
l2 |
=
infty | |
\sum | |
jk=-infty |
\vertcjk\vert2
and
\Vert
⋅ \Vert | |
L2 |
L2(R)
\Vert
2 | |
f\Vert | |
L2 |
=
infty | |
\int | |
-infty |
\vertf(x)\vert2dx
By the Riesz representation theorem, there exists a unique dual basis
\psijk
\langle\psijk\vert\psilm\rangle=\deltajl\deltakm
where
\deltajk
\langlef\vertg\rangle
L2(R)
f(x)=\sumjk\langle\psijk\vertf\rangle\psijk(x)
If there exists a function
\tilde{\psi}\inL2(R)
\tilde{\psi}jk=\psijk
then
\tilde{\psi}
\psi=\tilde{\psi}
An example of an R-function without a dual is easy to construct. Let
\phi
\psi(x)=\phi(x)+z\phi(2x)