Dual total correlation explained

In information theory, dual total correlation,[1] information rate,[2] excess entropy,[3] [4] or binding information[5] is one of several known non-negative generalizations of mutual information. While total correlation is bounded by the sum entropies of the n elements, the dual total correlation is bounded by the joint-entropy of the n elements. Although well behaved, dual total correlation has received much less attention than the total correlation. A measure known as "TSE-complexity" defines a continuum between the total correlation and dual total correlation.[3]

Definition

For a set of n random variables

\{X1,\ldots,Xn\}

, the dual total correlation

D(X1,\ldots,Xn)

is given by

D(X1,\ldots,Xn)=H\left(X1,\ldots,Xn\right)-

n
\sum
i=1

H\left(Xi\midX1,\ldots,Xi-1,Xi+1,\ldots,Xn\right),

where

H(X1,\ldots,Xn)

is the joint entropy of the variable set

\{X1,\ldots,Xn\}

and

H(Xi\mid)

is the conditional entropy of variable

Xi

, given the rest.

Normalized

The dual total correlation normalized between [0,1] is simply the dual total correlation divided by its maximum value

H(X1,\ldots,Xn)

,

ND(X1,\ldots,Xn)=

D(X1,\ldots,Xn)
H(X1,\ldots,Xn)

.

Relationship with Total Correlation

Dual total correlation is non-negative and bounded above by the joint entropy

H(X1,\ldots,Xn)

.

0\leqD(X1,\ldots,Xn)\leqH(X1,\ldots,Xn).

Secondly, Dual total correlation has a close relationship with total correlation,

C(X1,\ldots,Xn)

, and can be written in terms of differences between the total correlation of the whole, and all subsets of size

N-1

:[6]

D(bf{X})=(N-1)C(bf{X})-

N
\sum
i=1

C(bf{X}-i)

where

bf{X}=\{X1,\ldots,Xn\}

and

bf{X}-i=\{X1,\ldots,Xi-1,Xi+1,\ldots,Xn\}

Furthermore, the total correlation and dual total correlation are related by the following bounds:

C(X1,\ldots,Xn)
n-1

\leqD(X1,\ldots,Xn)\leq(n-1)C(X1,\ldots,Xn).

Finally, the difference between the total correlation and the dual total correlation defines a novel measure of higher-order information-sharing: the O-information:[7]

\Omega(bf{X})=C(bf{X})-D(bf{X})

.

The O-information (first introduced as the "enigmatic information" by James and Crutchfield[8] is a signed measure that quantifies the extent to which the information in a multivariate random variable is dominated by synergistic interactions (in which case

\Omega(bf{X})<0

) or redundant interactions (in which case

\Omega(bf{X})>0

.

History

Han (1978) originally defined the dual total correlation as,

\begin{align} &D(X1,\ldots,Xn)\\[10pt] \equiv{}&\left[

n
\sum
i=1

H(X1,\ldots,Xi-1,Xi+1,\ldots,Xn)\right]-(n-1)H(X1,\ldots,Xn). \end{align}

However Abdallah and Plumbley (2010) showed its equivalence to the easier-to-understand form of the joint entropy minus the sum of conditional entropies via the following:

\begin{align} &D(X1,\ldots,Xn)\\[10pt] \equiv{}&\left[

n
\sum
i=1

H(X1,\ldots,Xi-1,Xi+1,\ldots,Xn)\right]-(n-1)H(X1,\ldots,Xn)\\ ={}&\left[

n
\sum
i=1

H(X1,\ldots,Xi-1,Xi+1,\ldots,Xn)\right]+(1-n)H(X1,\ldots,Xn)\\ ={}&H(X1,\ldots,Xn)+\left[

n
\sum
i=1

H(X1,\ldots,Xi-1,Xi+1,\ldots,Xn)-H(X1,\ldots,Xn)\right]\\ ={}&H\left(X1,\ldots,Xn\right)-

n
\sum
i=1

H\left(Xi\midX1,\ldots,Xi-1,Xi+1,\ldots,Xn\right). \end{align}

See also

Bibliography

References

Notes and References

  1. 10.1016/S0019-9958(78)90275-9. Nonnegative entropy measures of multivariate symmetric correlations. 1978. Han. Te Sun. Information and Control. 36. 2. 133–156. free.
  2. 10.1162/comj.2006.30.2.63. Spectral Anticipations. 2006. Dubnov. Shlomo. Computer Music Journal. 30. 2. 63–83. 2202704.
  3. Nihat Ay, E. Olbrich, N. Bertschinger (2001). A unifying framework for complexity measures of finite systems. European Conference on Complex Systems. pdf.
  4. 10.1140/epjb/e2008-00134-9. How should complexity scale with system size?. 2008. Olbrich. E.. Bertschinger. N.. Ay. N.. Jost. J.. The European Physical Journal B. 63. 3. 407–415. 2008EPJB...63..407O. 120391127. free.
  5. 1012.1890v1. Abdallah. Samer A.. Plumbley. Mark D.. A measure of statistical complexity based on predictive information. 2010. math.ST.
  6. Varley . Thomas F. . Pope . Maria . Faskowitz . Joshua . Sporns . Olaf . Multivariate information theory uncovers synergistic subsystems of the human cerebral cortex . Communications Biology . 24 April 2023 . 6 . 1 . 451 . 10.1038/s42003-023-04843-w. free . 37095282 . 10125999 .
  7. Rosas . Fernando E. . Mediano . Pedro A. M. . Gastpar . Michael . Jensen . Henrik J. . Quantifying high-order interdependencies via multivariate extensions of the mutual information . Physical Review E . 13 September 2019 . 100 . 3 . 032305 . 10.1103/PhysRevE.100.032305. 31640038 . 1902.11239 . 2019PhRvE.100c2305R .
  8. James . Ryan G. . Ellison . Christopher J. . Crutchfield . James P. . Anatomy of a bit: Information in a time series observation . Chaos: An Interdisciplinary Journal of Nonlinear Science . 1 September 2011 . 21 . 3 . 037109 . 10.1063/1.3637494. 21974672 . 1105.2988 . 2011Chaos..21c7109J .