The Drucker–Prager yield criterion[1] is a pressure-dependent model for determining whether a material has failed or undergone plastic yielding. The criterion was introduced to deal with the plastic deformation of soils. It and its many variants have been applied to rock, concrete, polymers, foams, and other pressure-dependent materials.
The Drucker–Prager yield criterion has the form
\sqrt{J2}=A+B~I1
I1
J2
A,B
In terms of the equivalent stress (or von Mises stress) and the hydrostatic (or mean) stress, the Drucker–Prager criterion can be expressed as
\sigmae=a+b~\sigmam
\sigmae
\sigmam
a,b
\tfrac{1}{\sqrt{2}}\rho-\sqrt{3}~B\xi=A
The Drucker–Prager yield surface is a smooth version of the Mohr–Coulomb yield surface.
The Drucker–Prager model can be written in terms of the principal stresses as
\sqrt{\cfrac{1}{6}\left[(\sigma1-\sigma
2+(\sigma | |
2-\sigma |
2+(\sigma | |
3-\sigma |
2\right]} | |
1) |
=A+B~(\sigma1+\sigma2+\sigma3)~.
\sigmat
\cfrac{1}{\sqrt{3}}~\sigmat=A+B~\sigmat~.
\sigmac
\cfrac{1}{\sqrt{3}}~\sigmac=A-B~\sigmac~.
A=\cfrac{2}{\sqrt{3}}~\left(\cfrac{\sigmac~\sigmat}{\sigmac+\sigmat}\right)~;~~B=\cfrac{1}{\sqrt{3}}~\left(\cfrac{\sigmat-\sigmac}{\sigmac+\sigmat}\right)~.
Different uniaxial yield stresses in tension and in compression are predicted by the Drucker–Prager model. The uniaxial asymmetry ratio for the Drucker–Prager model is
\beta=\cfrac{\sigmac
Since the Drucker–Prager yield surface is a smooth version of the Mohr–Coulomb yield surface, it is often expressed in terms of the cohesion (
c
\phi
A
B
A=\cfrac{6~c~\cos\phi}{\sqrt{3}(3-\sin\phi)}~;~~ B=\cfrac{2~\sin\phi}{\sqrt{3}(3-\sin\phi)}
A=\cfrac{6~c~\cos\phi}{\sqrt{3}(3+\sin\phi)}~;~~ B=\cfrac{2~\sin\phi}{\sqrt{3}(3+\sin\phi)}
A=\cfrac{3~c~\cos\phi}{\sqrt{9+3~\sin2\phi}}~;~~ B=\cfrac{\sin\phi}{\sqrt{9+3~\sin2\phi}}
The Drucker–Prager model has been used to model polymers such as polyoxymethylene and polypropylene.[3] For polyoxymethylene the yield stress is a linear function of the pressure. However, polypropylene shows a quadratic pressure-dependence of the yield stress.
For foams, the GAZT model[4] uses
A=\pm\cfrac{\sigmay}{\sqrt{3}}~;~~B=\mp\cfrac{1}{\sqrt{3}}~\left(\cfrac{\rho}{5~\rhos}\right)
\sigmay
\rho
\rhos
The Drucker–Prager criterion can also be expressed in the alternative form
J2=(A+
2 | |
B~I | |
1) |
=a+b~I1+
2 | |
c~I | |
1 |
~.
The Deshpande–Fleck yield criterion[5] for foams has the form given in above equation. The parameters
a,b,c
a=(1+
2 | |
\beta | |
y |
~,~~ b=0~,~~ c=-\cfrac{\beta2}{3}
\beta
\sigmay
An anisotropic form of the Drucker–Prager yield criterion is the Liu–Huang–Stout yield criterion.[7] This yield criterion is an extension of the generalized Hill yield criterion and has the form
\begin{align} f:=&\sqrt{F(\sigma22-\sigma33
2+G(\sigma | |
) | |
33 |
-\sigma11
2+H(\sigma | |
) | |
11 |
-\sigma22)2+
2}\\ | |
2L\sigma | |
12 |
&+I\sigma11+J\sigma22+K\sigma33-1\le0 \end{align}
The coefficients
F,G,H,L,M,N,I,J,K
\begin{align} F=&
2 | |
\cfrac{1}{2}\left[\Sigma | |
2 |
+
2 | |
\Sigma | |
3 |
-
2\right] | |
\Sigma | |
1 |
~;~~ G=
2 | |
\cfrac{1}{2}\left[\Sigma | |
3 |
+
2 | |
\Sigma | |
1 |
-
2\right] | |
\Sigma | |
2 |
~;~~ H=
2 | |
\cfrac{1}{2}\left[\Sigma | |
1 |
+
2 | |
\Sigma | |
2 |
-
2\right] | |
\Sigma | |
3 |
\\ L=&
y) | |
\cfrac{1}{2(\sigma | |
23 |
2}~;~~ M=
y) | |
\cfrac{1}{2(\sigma | |
31 |
2}~;~~ N=
y) | |
\cfrac{1}{2(\sigma | |
12 |
2}\\ I=&\cfrac{\sigma1c-\sigma1t
\Sigma1:=\cfrac{\sigma1c+\sigma1t
\sigmaic,i=1,2,3
\sigmait,i=1,2,3
y, | |
\sigma | |
23 |
y, | |
\sigma | |
31 |
y | |
\sigma | |
12 |
\sigma1c,\sigma2c,\sigma3c
\sigma1t,\sigma2t,\sigma3t
The Drucker–Prager criterion should not be confused with the earlier Drucker criterion [8] which is independent of the pressure (
I1
f:=
3 | |
J | |
2 |
-
2 | |
\alpha~J | |
3 |
-k2\le0
J2
J3
\alpha
k
\alpha
\alpha=0
k2=
6}{27} | |
\cfrac{\sigma | |
y |
\sigmay
An anisotropic version of the Drucker yield criterion is the Cazacu–Barlat (CZ) yield criterion [9] which has the form
f:=
0) | |
(J | |
2 |
3-
0) | |
\alpha~(J | |
3 |
2-k2\le0
0, | |
J | |
2 |
0 | |
J | |
3 |
\begin{align}
0 | |
J | |
2 |
:=&\cfrac{1}{6}\left[a1(\sigma22-\sigma33
2+a | |
) | |
2(\sigma |
33-\sigma11)2+a3(\sigma11-\sigma22)2\right]+a4\sigma
2 | |
23 |
+a5\sigma
2 | |
31 |
+a6\sigma
2 | |
12 |
\\
0 | |
J | |
3 |
:=&\cfrac{1}{27}\left[(b1+b2)\sigma
3 | |
11 |
+(b3+b4)\sigma
3 | |
22 |
+\{2(b1+b4)-(b2+b3)\}\sigma
3\right] | |
33 |
\\ &-\cfrac{1}{9}\left[(b1\sigma22+b2\sigma33
2+(b | |
)\sigma | |
3\sigma |
33+b4\sigma11
2 | |
)\sigma | |
22 |
+\{(b1-b2+b4)\sigma11+(b1-b3+b4)\sigma22
2\right] | |
\}\sigma | |
33 |
\\ &+\cfrac{2}{9}(b1+b4)\sigma11\sigma22\sigma33+2b11\sigma12\sigma23\sigma31\\ &-\cfrac{1}{3}\left[\{2b9\sigma22-b8\sigma33-(2b9-b8)\sigma11
2+ | |
\}\sigma | |
31 |
\{2b10\sigma33-b5\sigma22-(2b10-b5)\sigma11
2 | |
\}\sigma | |
12 |
\right.\\ & \left.\{(b6+b7)\sigma11-b6\sigma22-b7\sigma33
2 | |
\}\sigma | |
23 |
\right] \end{align}
For thin sheet metals, the state of stress can be approximated as plane stress. In that case the Cazacu–Barlat yield criterion reduces to its two-dimensional version with
\begin{align}
0 | |
J | |
2 |
=&\cfrac{1}{6}\left[(a2+a3)\sigma
2+(a | |
1+a |
3)\sigma
2-2a | |
3\sigma |
1\sigma2\right]+a6\sigma
2 | |
12 |
\\
0 | |
J | |
3 |
=&\cfrac{1}{27}\left[(b1+b2)\sigma
3 | |
11 |
+(b3+b4)\sigma
3 | |
22 |
\right] -\cfrac{1}{9}\left[b1\sigma11+b4\sigma22\right]\sigma11\sigma22+\cfrac{1}{3}\left[b5\sigma22+(2b10-b5)\sigma11
2 | |
\right]\sigma | |
12 |
\end{align}
For thin sheets of metals and alloys, the parameters of the Cazacu–Barlat yield criterion are
6016-T4 Aluminum Alloy | 0.815 | 0.815 | 0.334 | 0.42 | 0.04 | -1.205 | -0.958 | 0.306 | 0.153 | -0.02 | 1.4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2090-T3 Aluminum Alloy | 1.05 | 0.823 | 0.586 | 0.96 | 1.44 | 0.061 | -1.302 | -0.281 | -0.375 | 0.445 | 1.285 |
\beta=\alpha/3
\alpha