In mathematics, the doubling-oriented Doche–Icart–Kohel curve is a form in which an elliptic curve can be written. It is a special case of Weierstrass form and it is also important in elliptic-curve cryptography because the doubling speeds up considerably (computing as composition of 2-isogeny and its dual). It has been introduced by Christophe Doche, Thomas Icart, and David R. Kohel in Efficient Scalar Multiplication by Isogeny Decompositions.[1]
Let
K
a\inK
y2=x3+ax2+16ax
Equivalently, in projective coordinates:
ZY2=X3+aZX2+16aXZ2,
with
x= | X |
Z |
y= | Y |
Z |
Notice that, since this curve is a special case of Weierstrass form, transformations to the most common form of elliptic curve (Weierstrass form) are not needed.
It is interesting to analyze the group law in elliptic curve cryptography, defining the addition and doubling formulas, because these formulas are necessary to compute multiples of points [n]P (see Exponentiation by squaring). In general, the group law is defined in the following way: if three points lies in the same line then they sum up to zero. So, by this property, the group laws are different for every curve shape.
In this case, since these curves are special cases of Weierstrass curves, the addition is just the standard addition on Weierstrass curves. On the other hand, to double a point, the standard doubling formula can be used, but it would not be so fast.In this case, the neutral element is
\theta=(0:1:0)
\theta=-\theta
P=(x,y)
P!=O
In this case, affine coordinates will be used to define the addition formula:
(x1,y1)+(x2,y2)=(x3,y3)
x3=
| ||||||||||||||||||||||||||||||||||||||||||||||
|
y3=
| |||||||||||||||||||||||||||||||||||||||||||||||||
|
2(x1,y1)=(x3,y3)
x3 = 1/(4y12)x14-8a/y12x12+64a2/y12
y3 = 1/(8y13)x16+((-a2+40a)/(4y13))x14+((ay12+(16a3-640a2))/(4y13))x12+((-4a2y12-512a3)/y13)
The fastest addition is the following one (comparing with the results given in: http://hyperelliptic.org/EFD/g1p/index.html), and the cost that it takes is 4 multiplications, 4 squaring and 10 addition.
A = Y2-Y1
AA = A2
B = X2-X1
CC = B2
F = X1CC
Z3 = 2CC
D = X2Z3
ZZ3 = Z32
X3 = 2(AA-F)-aZ3-D
Y3 = ((A+B)2-AA-CC)(D-X3)-Y2ZZ3
Let
K=Q
A=2
AA=4
B=1
CC=1
F=2
Z3=4
D=4
ZZ3=16
X3=-4
Y3=336
Thus, P+Q=(-4:336:4)
The following algorithm is the fastest one (see the following link to compare: http://hyperelliptic.org/EFD/g1p/index.html), and the cost that it takes is 1 multiplication, 5 squaring and 7 additions.
A = X12
B = A-a16
C = a2A
YY = Y12
YY2 = 2YY
Z3 = 2YY2
X3 = B2
V = (Y1+B)2-YY-X3
Y3 = V(X3+64C+a(YY2-C))
ZZ3 = Z32
Let
K=Q
A=1
B=-15
C=2
YY=4
YY2=8
Z3=16
X3=225
V=27
Y3=9693
ZZ3=256
Thus, Q=(225:9693:16).
The addition and doubling computations should be as fast as possible, so it is more convenient to use the following representation of the coordinates:
x,y
X,Y,Z,ZZ
x= | X |
Z |
y= | Y |
ZZ |
ZZ=Z2
Then, the Doubling-oriented Doche–Icart–Kohel curve is given by the following equation:
Y2=ZX3+aZ2X2+16aZ3X
In this case,
P=(X:Y:Z:ZZ)
-P=(X:-Y:Z:ZZ)
(X:Y:Z:Z2)=(λX:λ2Y:λZ:λ2Z2)
λ
Faster doubling formulas for these curves and mixed-addition formulas were introduced by Doche, Icart and Kohel; but nowadays, these formulas are improved by Daniel J. Bernstein and Tanja Lange (see below the link of EFD).
For more information about the running-time required in a specific case, see Table of costs of operations in elliptic curves