Doi-Hopf module explained

In quantum group, Hopf algebra and weak Hopf algebra, the Doi-Hopf module is a crucial construction that has many applications. It's named after Japanese mathematician Yukio Doi (土井 幸雄[1]) and German mathematician Heinz Hopf. The concept was introduce by Doi in his 1992 paper "unifying Hopf modules[2] ".

Doi-Hopf module

A right Doi-Hopf datum is a triple

(H,A,C)

with

H

a Hopf algebra,

A

a left

H

-comodule algebra, and

C

a right

H

-module coalgebra. A left-right Doi-Hopf

(H,A,C)

-module

M

is a left

A

-module and a right

C

-comodule via

\beta:M\toMC

such that

\beta(am)=\suma(0)m[0]a(1)\rightharpoonupm[1]

for all

a\inA,m\inM

. The subscript is the Sweedler notation.

A left Doi-Hopf datum is a triple

(H,A,C)

with

H

a Hopf algebra,

A

a right

H

-comodule algebra, and

C

a left

H

-module coalgebra. A Doi-Hopf module can be defined similarly.

Doi-Hopf module in weak Hopf algebra

The generalization of Doi-Hopf module in weak Hopf algebra case is given by Gabriella Böhm in 2000.[3]

Notes and References

  1. Web site: 土井 幸雄 (Yukio Doi) - マイポータル - researchmap . 2022-12-30 . researchmap.jp.
  2. Doi . Yukio . 1992-12-15 . Unifying Hopf modules . Journal of Algebra . en . 153 . 2 . 373–385 . 10.1016/0021-8693(92)90160-N . 0021-8693. free .
  3. Böhm . Gabriella . 2000-01-01 . Doi-hopf modules over weak hopf algebras . Communications in Algebra . 28 . 10 . 4687–4698 . 10.1080/00927870008827113 . math/9905027 . 123012465 . 0092-7872.