In mathematics, the Dixon elliptic functions sm and cm are two elliptic functions (doubly periodic meromorphic functions on the complex plane) that map from each regular hexagon in a hexagonal tiling to the whole complex plane. Because these functions satisfy the identity
\operatorname{cm}3z+\operatorname{sm}3z=1
x3+y3=1
x2+y2=1
They were named sm and cm by Alfred Dixon in 1890, by analogy to the trigonometric functions sine and cosine and the Jacobi elliptic functions sn and cn; Göran Dillner described them earlier in 1873.[1]
The functions sm and cm can be defined as the solutions to the initial value problem:[2]
d | |
dz |
\operatorname{cm}z=-\operatorname{sm}2z,
d | |
dz |
\operatorname{sm}z=\operatorname{cm}2z, \operatorname{cm}(0)=1, \operatorname{sm}(0)=0
Or as the inverse of the Schwarz–Christoffel mapping from the complex unit disk to an equilateral triangle, the Abelian integral:[3]
z=
\operatorname{sm | |
\int | |
0 |
z}
dw | |
(1-w3)2/3 |
=\int\operatorname{cmz}1
dw | |
(1-w3)2/3 |
which can also be expressed using the hypergeometric function:[4]
\operatorname{sm}-1(z)=z {}2F1l(\tfrac13,\tfrac23;\tfrac43;z3r)
Both sm and cm have a period along the real axis of
\pi3=\Betal(\tfrac13,\tfrac13r)=\tfrac{\sqrt{3}}{2\pi}\Gamma3l(\tfrac{1}{3}r) ≈ 5.29991625
\Beta
\Gamma
\begin{aligned}\tfrac13\pi3&=
0 | |
\int | |
-infty |
dx | |
(1-x3)2/3 |
=
1 | |
\int | |
0 |
dx | |
(1-x3)2/3 |
=
infty | |
\int | |
1 |
dx | |
(1-x3)2/3 |
\\[8mu]& ≈ 1.76663875\end{aligned}
They satisfy the identity
\operatorname{cm}3z+\operatorname{sm}3z=1
t\mapsto(\operatorname{cm}t,\operatorname{sm}t),
t\inl[{-\tfrac13}\pi3,\tfrac23\pi3r]
x3+y3=1,
\tfrac12t
(1,0)
(\operatorname{cm}t,\operatorname{sm}t)
A=\tfrac12
t | |
\int | |
0 |
(xdy-ydx)=\tfrac12
t | |
\int | |
0 |
(\operatorname{cm}3t+\operatorname{sm}3t)dt=\tfrac12
t | |
\int | |
0 |
dt=\tfrac12t.
Notice that the area between the
x+y=0
x3+y3=1
\tfrac16\pi3
\begin{aligned} \tfrac12\pi3&=
infty | |
\int | |
-infty |
l((1-x3)1/3+xr)dx\\[8mu] \tfrac16\pi3&=
0 | |
\int | |
-infty |
l((1-x3)1/3+xr)dx=
1 | |
\int | |
0 |
(1-x3)1/3dx. \end{aligned}
The function
\operatorname{sm}z
z=\tfrac1\sqrt{3}\pi3i(a+b\omega)
a
b
\omega
\omega=\exp\tfrac23i\pi=-\tfrac12+\tfrac\sqrt{3}2i
a+b\omega
\operatorname{cm}z
z=\tfrac13\pi3+\tfrac1\sqrt{3}\pi3i(a+b\omega)
z=-\tfrac13\pi3+\tfrac1\sqrt{3}\pi3i(a+b\omega)
On the real line,
\operatorname{sm}x=0\leftrightarrowx\in\pi3Z
\sinx=0\leftrightarrowx\in\piZ
Both and commute with complex conjugation,
\begin{align} \operatorname{cm}\bar{z}&=\overline{\operatorname{cm}z},\\ \operatorname{sm}\bar{z}&=\overline{\operatorname{sm}z}. \end{align}
Analogous to the parity of trigonometric functions (cosine an even function and sine an odd function), the Dixon function is invariant under turn rotations of the complex plane, and turn rotations of the domain of cause
\tfrac13
\begin{align} \operatorname{cm}\omegaz&=\operatorname{cm}z=\operatorname{cm}\omega2z,\\ \operatorname{sm}\omegaz&=\omega\operatorname{sm}z=\omega2\operatorname{sm}\omega2z. \end{align}
Each Dixon elliptic function is invariant under translations by the Eisenstein integers
a+b\omega
\pi3,
\begin{align} \operatorname{cm}l(z+\pi3(a+b\omega)r)=\operatorname{cm}z,\\ \operatorname{sm}l(z+\pi3(a+b\omega)r)=\operatorname{sm}z. \end{align}
Negation of each of and is equivalent to a
\tfrac13\pi3
\begin{align} \operatorname{cm}(-z)&=
1 | |
\operatorname{cm |
z}=\operatorname{sm}l(z+\tfrac13\pi3r),\\ \operatorname{sm}(-z)&=-
\operatorname{sm | |
z}{\operatorname{cm} |
z}=
1 | |
\operatorname{sm |
l(z-\tfrac13\pi3r)}=\operatorname{cm}l(z+\tfrac13\pi3r). \end{align}
For
n\in\{0,1,2\},
\tfrac13\pi3\omega
n\pi | |
\begin{align} \operatorname{cm}l(z+\tfrac13\omega | |
3r) |
&=\omega2n
-\operatorname{sm | |
z}{\operatorname{cm} |
z},
n\pi | |
\\ \operatorname{sm}l(z+\tfrac13\omega | |
3r) |
&=
| ||||
\omega |
z}. \end{align}
{-\tfrac13}\pi3 | infty | infty | |
{-\tfrac16}\pi3 | \sqrt[3]{2} | -1 | |
0 | 1 | 0 | |
{\tfrac16}\pi3 | 1/\sqrt[3]{2} | 1/\sqrt[3]{2} | |
{\tfrac13}\pi3 | 0 | 1 | |
{\tfrac12}\pi3 | -1 | \sqrt[3]{2} | |
{\tfrac23}\pi3 | infty | infty |
{-\tfrac14}\pi3 |
\sqrt{2\sqrt{3}}} {2} |
| ||||||||||||
-{\tfrac29}\pi3 |
|
| ||||||||||||
-{\tfrac19}\pi3 |
|
\pi\right)} | ||||||||||||
-{\tfrac{1}{12}}\pi3 |
\sqrt{2\sqrt{3}}} {2\sqrt[3]{2}} |
\sqrt{2\sqrt{3}}} {2\sqrt[3]{2}} | ||||||||||||
{\tfrac{1}{12}}\pi3 |
|
\sqrt{2\sqrt{3}}} {2} | ||||||||||||
{\tfrac19}\pi3 |
|
| ||||||||||||
{\tfrac29}\pi3 |
|
| ||||||||||||
{\tfrac14}\pi3 |
\sqrt{2\sqrt{3}}} {2} |
| ||||||||||||
{\tfrac{5}{12}}\pi3 |
\sqrt{2\sqrt{3}}} {2\sqrt[3]{2}} |
\sqrt{2\sqrt{3}}} {2\sqrt[3]{2}} | ||||||||||||
{\tfrac49}\pi3 |
\pi\right)} |
| ||||||||||||
{\tfrac59}\pi3 |
|
| ||||||||||||
{\tfrac{7}{12}}\pi3 |
|
\sqrt{2\sqrt{3}}} {2} |
The Dixon elliptic functions satisfy the argument sum and difference identities:[7]
\begin{aligned} \operatorname{cm}(u+v)&=
\operatorname{sm | |
u |
\operatorname{cm}u-\operatorname{sm}v\operatorname{cm}v} {\operatorname{sm}u\operatorname{cm}2v-\operatorname{cm}2u\operatorname{sm}v} \\[8mu] \operatorname{cm}(u-v)&=
\operatorname{cm | |
2 |
u\operatorname{cm}v-\operatorname{sm}u\operatorname{sm}2v} {\operatorname{cm}u\operatorname{cm}2v-\operatorname{sm}2u\operatorname{sm}v} \\[8mu] \operatorname{sm}(u+v)&=
\operatorname{sm | |
2 |
u\operatorname{cm}v-\operatorname{cm}u\operatorname{sm}2v} {\operatorname{sm}u\operatorname{cm}2v-\operatorname{cm}2u\operatorname{sm}v} \\[8mu] \operatorname{sm}(u-v)&=
\operatorname{sm | |
u |
\operatorname{cm}u-\operatorname{sm}v\operatorname{cm}v} {\operatorname{cm}u\operatorname{cm}2v-\operatorname{sm}2u\operatorname{sm}v} \end{aligned}
These formulas can be used to compute the complex-valued functions in real components:
\begin{aligned} \operatorname{cm}(x+\omegay) &=
\operatorname{sm | |
x |
\operatorname{cm}x-\omega\operatorname{sm}y\operatorname{cm}y} {\operatorname{sm}x\operatorname{cm}2y-\omega\operatorname{cm}2x\operatorname{sm}y}\\[4mu] &=
\operatorname{cm | |
x |
(\operatorname{sm}2x\operatorname{cm}2y+\operatorname{cm}x\operatorname{sm}2y\operatorname{cm}y+\operatorname{sm}x\operatorname{cm}2x\operatorname{sm}y)}{\operatorname{sm}2x\operatorname{cm}4y+\operatorname{sm}x\operatorname{cm}2x\operatorname{sm}y\operatorname{cm}2y+\operatorname{cm}4x\operatorname{sm}2y}\\[4mu] & +\omega
\operatorname{sm | |
x |
\operatorname{sm}y(\operatorname{cm}3x-\operatorname{cm}3y)}{\operatorname{sm}2x\operatorname{cm}4y+\operatorname{sm}x\operatorname{cm}2x\operatorname{sm}y\operatorname{cm}2y+\operatorname{cm}4x\operatorname{sm}2y} \\[8mu] \operatorname{sm}(x+\omegay) &=
\operatorname{sm | |
2 |
x\operatorname{cm}y-\omega2\operatorname{cm}x\operatorname{sm}2y} {\operatorname{sm}x\operatorname{cm}2y-\omega\operatorname{cm}2x\operatorname{sm}y}\\[4mu] &=
\operatorname{sm | |
x |
(\operatorname{sm}x\operatorname{cm}x\operatorname{cm}2y+\operatorname{sm}y\operatorname{cm}3x+\operatorname{sm}y\operatorname{cm}3y)}{\operatorname{sm}2x\operatorname{cm}4y+\operatorname{sm}x\operatorname{cm}2x\operatorname{sm}y\operatorname{cm}2y+\operatorname{cm}4x\operatorname{sm}2y}\\[4mu] & +\omega
\operatorname{sm | |
y |
(\operatorname{sm}x\operatorname{cm}3x+\operatorname{sm}x\operatorname{cm}3y+\operatorname{cm}2x\operatorname{sm}y\operatorname{cm}y)}{\operatorname{sm}2x\operatorname{cm}4y+\operatorname{sm}x\operatorname{cm}2x\operatorname{sm}y\operatorname{cm}2y+\operatorname{cm}4x\operatorname{sm}2y} \end{aligned}
Argument duplication and triplication identities can be derived from the sum identity:[8]
\begin{align} \operatorname{cm}2u&=
\operatorname{cm | |
3 |
u-\operatorname{sm}3u} {\operatorname{cm}u(1+\operatorname{sm}3u)}=
2\operatorname{cm | |
3 |
u-1} {2\operatorname{cm}u-\operatorname{cm}4u},\\[5mu] \operatorname{sm}2u&=
\operatorname{sm | |
u |
(1+\operatorname{cm}3u)} {\operatorname{cm}u(1+\operatorname{sm}3u)}=
2\operatorname{sm | |
u |
-\operatorname{sm}4u} {2\operatorname{cm}u-\operatorname{cm}4u},\\[5mu] \operatorname{cm}3u&=
\operatorname{cm | |
9 |
u-6\operatorname{cm}6u+3\operatorname{cm}3u+1} {\operatorname{cm}9u+3\operatorname{cm}6u-6\operatorname{cm}3u+1},\\[5mu] \operatorname{sm}3u&=
3\operatorname{sm | |
u |
\operatorname{cm}u(\operatorname{sm}3u\operatorname{cm}3u-1)} {\operatorname{cm}9u+3\operatorname{cm}6u-6\operatorname{cm}3u+1}. \end{align}
\operatorname{cm}( | k\pi3 |
2n3m |
)
\operatorname{sm}( | k\pi3 |
2n3m |
)
n,m,k\inN
M=
\cup\{infty}\
\operatorname{cm}( | x |
2 |
)
\operatorname{cm}x\inM
\operatorname{cm}( | x |
2 |
)\inM
t=x3
\operatorname{cm}x\inM
\operatorname{cm}( | x |
3 |
)\inM
\operatorname{cm}x\inM
⇒
\operatorname{cm}(nx)\inM
\operatorname{cm}x\inM
\operatorname{sm}x\inM
\operatorname{sm}x=\omegap\sqrt[3]{1-\operatorname{cm}3x}
p\in\{0,1,2\}
The
\operatorname{cm}
where
\operatorname{cl}
\varpi
The and functions can be approximated for
|z|<\tfrac13\pi3
\begin{aligned} \operatorname{cm}z&=c0+
3 | |
c | |
1z |
+
6 | |
c | |
2z |
+
9 | |
c | |
3z |
+ … +
3n | |
c | |
nz |
+ … \\[4mu] \operatorname{sm}z&=s0z+
4 | |
s | |
1z |
+
7 | |
s | |
2z |
+
10 | |
s | |
3z |
+ … +
3n+1 | |
s | |
nz |
+ … \end{aligned}
whose coefficients satisfy the recurrence
c0=s0=1,
\begin{aligned} cn&=-
1 | |
3n |
n-1 | |
\sum | |
k=0 |
sksn-1-k\\[4mu] sn&=
1 | |
3n+1 |
n | |
\sum | |
k=0 |
ckcn-k\end{aligned}
These recurrences result in:[10]
\begin{aligned} \operatorname{cm}z&=1-
1 | |
3 |
z3+
1 | |
18 |
z6-
23 | |
2268 |
z9+
25 | |
13608 |
z12-
619 | |
1857492 |
z15+ … \\[8mu] \operatorname{sm}z&=z-
1 | |
6 |
z4+
2 | |
63 |
z7-
13 | |
2268 |
z10+
23 | |
22113 |
z13-
2803 | |
14859936 |
z16+ … \end{aligned}
\wp(z)=\wpl(z;0,\tfrac1{27}r),
Λ=\pi3Z ⊕ \pi3\omegaZ
\wp(z)=
1 | |
z2 |
+\sumλ\inΛ\setminus\{0\
The function
\wp(z)
\wp'(z)2=4\wp(z)3-\tfrac1{27}
We can also write it as the inverse of the integral:
z=
\wp(z) | |
\int | |
infty |
dw | |
\sqrt{4w3-\tfrac1{27 |
In terms of
\wp(z)
\operatorname{cm}z=
3\wp'(z)+1 | |
3\wp'(z)-1 |
, \operatorname{sm}z=
-6\wp(z) | |
3\wp'(z)-1 |
Likewise, the Weierstrass elliptic function
\wp(z)=\wpl(z;0,\tfrac1{27}r)
\wp'(z)=
\operatorname{cm | |
z |
+1}{3(\operatorname{cm}z-1)}, \wp(z)=
-\operatorname{sm | |
z}{3(\operatorname{cm} |
z-1)}
The Dixon elliptic functions can also be expressed using Jacobi elliptic functions, which was first observed by Cayley.[13] Let
k=e5
\theta=
| ||||
3 |
e5
s=\operatorname{sn}(u,k)
c=\operatorname{cn}(u,k)
d=\operatorname{dn}(u,k)
\xi(u)=
-1+\thetascd | |
1+\thetascd |
η(u)=
21/3\left(1+\theta2s2\right) | |
1+\thetascd |
Finally, the Dixon elliptic functions are as so:
\operatorname{sm}(z)=\xi\left(
z+\pi3/6 | |
21/3\theta |
\right)
\operatorname{cm}(z)=η\left(
z+\pi3/6 | |
21/3\theta |
\right)
Several definitions of generalized trigonometric functions include the usual trigonometric sine and cosine as an
n=2
n=3
For example, defining
\pin=\Betal(\tfrac1n,\tfrac1nr)
\sinnz,\cosnz
z=
\sinnz | |
\int | |
0 |
dw | |
(1-wn)(n-1)/n |
=
1 | |
\int | |
\cosnz |
dw | |
(1-wn)(n-1)/n |
The area in the positive quadrant under the curve
xn+yn=1
1 | |
\int | |
0 |
(1-xn)1/ndx=
\pin | |
2n |
The quartic
n=4
The Dixon elliptic functions are conformal maps from an equilateral triangle to a disk, and are therefore helpful for constructing polyhedral conformal map projections involving equilateral triangles, for example projecting the sphere onto a triangle, hexagon, tetrahedron, octahedron, or icosahedron.[15]
x3+y3=z3
W=\operatorname{sm}, W1=\operatorname{cm}.
3w
3λ
3K
\pi3
\wp(z;0,-1).