Dixon elliptic functions explained

In mathematics, the Dixon elliptic functions sm and cm are two elliptic functions (doubly periodic meromorphic functions on the complex plane) that map from each regular hexagon in a hexagonal tiling to the whole complex plane. Because these functions satisfy the identity

\operatorname{cm}3z+\operatorname{sm}3z=1

, as real functions they parametrize the cubic Fermat curve

x3+y3=1

, just as the trigonometric functions sine and cosine parametrize the unit circle

x2+y2=1

.

They were named sm and cm by Alfred Dixon in 1890, by analogy to the trigonometric functions sine and cosine and the Jacobi elliptic functions sn and cn; Göran Dillner described them earlier in 1873.[1]

Definition

The functions sm and cm can be defined as the solutions to the initial value problem:[2]

d
dz

\operatorname{cm}z=-\operatorname{sm}2z,

d
dz

\operatorname{sm}z=\operatorname{cm}2z,\operatorname{cm}(0)=1,\operatorname{sm}(0)=0

Or as the inverse of the Schwarz–Christoffel mapping from the complex unit disk to an equilateral triangle, the Abelian integral:[3]

z=

\operatorname{sm
\int
0

z}

dw
(1-w3)2/3

=\int\operatorname{cmz}1

dw
(1-w3)2/3

which can also be expressed using the hypergeometric function:[4]

\operatorname{sm}-1(z)=z{}2F1l(\tfrac13,\tfrac23;\tfrac43;z3r)

Parametrization of the cubic Fermat curve

Both sm and cm have a period along the real axis of

\pi3=\Betal(\tfrac13,\tfrac13r)=\tfrac{\sqrt{3}}{2\pi}\Gamma3l(\tfrac{1}{3}r)5.29991625

with

\Beta

the beta function and

\Gamma

the gamma function:[5]

\begin{aligned}\tfrac13\pi3&=

0
\int
-infty
dx
(1-x3)2/3

=

1
\int
0
dx
(1-x3)2/3

=

infty
\int
1
dx
(1-x3)2/3

\\[8mu]&1.76663875\end{aligned}

They satisfy the identity

\operatorname{cm}3z+\operatorname{sm}3z=1

. The parametric function

t\mapsto(\operatorname{cm}t,\operatorname{sm}t),

t\inl[{-\tfrac13}\pi3,\tfrac23\pi3r]

parametrizes the cubic Fermat curve

x3+y3=1,

with

\tfrac12t

representing the signed area lying between the segment from the origin to

(1,0)

, the segment from the origin to

(\operatorname{cm}t,\operatorname{sm}t)

, and the Fermat curve, analogous to the relationship between the argument of the trigonometric functions and the area of a sector of the unit circle.[6] To see why, apply Green's theorem:

A=\tfrac12

t
\int
0

(xdy-ydx)=\tfrac12

t
\int
0

(\operatorname{cm}3t+\operatorname{sm}3t)dt=\tfrac12

t
\int
0

dt=\tfrac12t.

Notice that the area between the

x+y=0

and

x3+y3=1

can be broken into three pieces, each of area

\tfrac16\pi3

:

\begin{aligned} \tfrac12\pi3&=

infty
\int
-infty

l((1-x3)1/3+xr)dx\\[8mu] \tfrac16\pi3&=

0
\int
-infty

l((1-x3)1/3+xr)dx=

1
\int
0

(1-x3)1/3dx. \end{aligned}

Symmetries

The function

\operatorname{sm}z

has zeros at the complex-valued points

z=\tfrac1\sqrt{3}\pi3i(a+b\omega)

for any integers

a

and

b

, where

\omega

is a cube root of unity,

\omega=\exp\tfrac23i\pi=-\tfrac12+\tfrac\sqrt{3}2i

(that is,

a+b\omega

is an Eisenstein integer). The function

\operatorname{cm}z

has zeros at the complex-valued points

z=\tfrac13\pi3+\tfrac1\sqrt{3}\pi3i(a+b\omega)

. Both functions have poles at the complex-valued points

z=-\tfrac13\pi3+\tfrac1\sqrt{3}\pi3i(a+b\omega)

.

On the real line,

\operatorname{sm}x=0\leftrightarrowx\in\pi3Z

, which is analogous to

\sinx=0\leftrightarrowx\in\piZ

.

Fundamental reflections, rotations, and translations

Both and commute with complex conjugation,

\begin{align} \operatorname{cm}\bar{z}&=\overline{\operatorname{cm}z},\\ \operatorname{sm}\bar{z}&=\overline{\operatorname{sm}z}. \end{align}

Analogous to the parity of trigonometric functions (cosine an even function and sine an odd function), the Dixon function is invariant under \tfrac13 turn rotations of the complex plane, and \tfrac13 turn rotations of the domain of cause

\tfrac13

turn rotations of the codomain:

\begin{align} \operatorname{cm}\omegaz&=\operatorname{cm}z=\operatorname{cm}\omega2z,\\ \operatorname{sm}\omegaz&=\omega\operatorname{sm}z=\omega2\operatorname{sm}\omega2z. \end{align}

Each Dixon elliptic function is invariant under translations by the Eisenstein integers

a+b\omega

scaled by

\pi3,

\begin{align} \operatorname{cm}l(z+\pi3(a+b\omega)r)=\operatorname{cm}z,\\ \operatorname{sm}l(z+\pi3(a+b\omega)r)=\operatorname{sm}z. \end{align}

Negation of each of and is equivalent to a

\tfrac13\pi3

translation of the other,

\begin{align} \operatorname{cm}(-z)&=

1
\operatorname{cm

z}=\operatorname{sm}l(z+\tfrac13\pi3r),\\ \operatorname{sm}(-z)&=-

\operatorname{sm
z}{\operatorname{cm}

z}=

1
\operatorname{sm

l(z-\tfrac13\pi3r)}=\operatorname{cm}l(z+\tfrac13\pi3r). \end{align}

For

n\in\{0,1,2\},

translations by

\tfrac13\pi3\omega

give
n\pi
\begin{align} \operatorname{cm}l(z+\tfrac13\omega
3r)

&=\omega2n

-\operatorname{sm
z}{\operatorname{cm}

z},

n\pi
\\ \operatorname{sm}l(z+\tfrac13\omega
3r)

&=

n1
\operatorname{cm
\omega

z}. \end{align}

Specific values

!

z

!

\operatorname{cm}z

!

\operatorname{sm}z

{-\tfrac13}\pi3

infty

infty

{-\tfrac16}\pi3

\sqrt[3]{2}

-1

0

1

0

{\tfrac16}\pi3

1/\sqrt[3]{2}

1/\sqrt[3]{2}

{\tfrac13}\pi3

0

1

{\tfrac12}\pi3

-1

\sqrt[3]{2}

{\tfrac23}\pi3

infty

infty

More specific values

!

z

!

\operatorname{cm}z

!

\operatorname{sm}z

{-\tfrac14}\pi3

1+\sqrt{3
+

\sqrt{2\sqrt{3}}} {2}

-1-\sqrt{3+2\sqrt{3
}}

-{\tfrac29}\pi3

\sqrt[6]3
2\sin\left(19\pi\right)
-
2\cos\left(1{18
\pi\right)}{\sqrt[6]3}

-{\tfrac19}\pi3

2\sin\left(29\pi\right)
\sqrt[6]3
-\sqrt[6]3
2\cos\left(1{18

\pi\right)}

-{\tfrac{1}{12}}\pi3

-1+\sqrt{3
+

\sqrt{2\sqrt{3}}} {2\sqrt[3]{2}}

-1+\sqrt{3
-

\sqrt{2\sqrt{3}}} {2\sqrt[3]{2}}

{\tfrac{1}{12}}\pi3

-1+\sqrt{3+2\sqrt{3
}}
1+\sqrt{3
-

\sqrt{2\sqrt{3}}} {2}

{\tfrac19}\pi3

\sqrt[6]3
2\sin\left(29\pi\right)
2\sin\left(19\pi\right)
\sqrt[6]3

{\tfrac29}\pi3

2\sin\left(19\pi\right)
\sqrt[6]3
\sqrt[6]3
2\sin\left(29\pi\right)

{\tfrac14}\pi3

1+\sqrt{3
-

\sqrt{2\sqrt{3}}} {2}

-1+\sqrt{3+2\sqrt{3
}}

{\tfrac{5}{12}}\pi3

-1+\sqrt{3
-

\sqrt{2\sqrt{3}}} {2\sqrt[3]{2}}

-1+\sqrt{3
+

\sqrt{2\sqrt{3}}} {2\sqrt[3]{2}}

{\tfrac49}\pi3

-\sqrt[6]3
2\cos\left(1{18

\pi\right)}

2\sin\left(29\pi\right)
\sqrt[6]3

{\tfrac59}\pi3

-
2\cos\left(1{18
\pi\right)}{\sqrt[6]3}
\sqrt[6]3
2\sin\left(19\pi\right)

{\tfrac{7}{12}}\pi3

-1-\sqrt{3+2\sqrt{3
}}
1+\sqrt{3
+

\sqrt{2\sqrt{3}}} {2}

Sum and difference identities

The Dixon elliptic functions satisfy the argument sum and difference identities:[7]

\begin{aligned} \operatorname{cm}(u+v)&=

\operatorname{sm
u

\operatorname{cm}u-\operatorname{sm}v\operatorname{cm}v} {\operatorname{sm}u\operatorname{cm}2v-\operatorname{cm}2u\operatorname{sm}v} \\[8mu] \operatorname{cm}(u-v)&=

\operatorname{cm
2

u\operatorname{cm}v-\operatorname{sm}u\operatorname{sm}2v} {\operatorname{cm}u\operatorname{cm}2v-\operatorname{sm}2u\operatorname{sm}v} \\[8mu] \operatorname{sm}(u+v)&=

\operatorname{sm
2

u\operatorname{cm}v-\operatorname{cm}u\operatorname{sm}2v} {\operatorname{sm}u\operatorname{cm}2v-\operatorname{cm}2u\operatorname{sm}v} \\[8mu] \operatorname{sm}(u-v)&=

\operatorname{sm
u

\operatorname{cm}u-\operatorname{sm}v\operatorname{cm}v} {\operatorname{cm}u\operatorname{cm}2v-\operatorname{sm}2u\operatorname{sm}v} \end{aligned}

These formulas can be used to compute the complex-valued functions in real components:

\begin{aligned} \operatorname{cm}(x+\omegay) &=

\operatorname{sm
x

\operatorname{cm}x-\omega\operatorname{sm}y\operatorname{cm}y} {\operatorname{sm}x\operatorname{cm}2y-\omega\operatorname{cm}2x\operatorname{sm}y}\\[4mu] &=

\operatorname{cm
x

(\operatorname{sm}2x\operatorname{cm}2y+\operatorname{cm}x\operatorname{sm}2y\operatorname{cm}y+\operatorname{sm}x\operatorname{cm}2x\operatorname{sm}y)}{\operatorname{sm}2x\operatorname{cm}4y+\operatorname{sm}x\operatorname{cm}2x\operatorname{sm}y\operatorname{cm}2y+\operatorname{cm}4x\operatorname{sm}2y}\\[4mu] &    +\omega

\operatorname{sm
x

\operatorname{sm}y(\operatorname{cm}3x-\operatorname{cm}3y)}{\operatorname{sm}2x\operatorname{cm}4y+\operatorname{sm}x\operatorname{cm}2x\operatorname{sm}y\operatorname{cm}2y+\operatorname{cm}4x\operatorname{sm}2y} \\[8mu] \operatorname{sm}(x+\omegay) &=

\operatorname{sm
2

x\operatorname{cm}y-\omega2\operatorname{cm}x\operatorname{sm}2y} {\operatorname{sm}x\operatorname{cm}2y-\omega\operatorname{cm}2x\operatorname{sm}y}\\[4mu] &=

\operatorname{sm
x

(\operatorname{sm}x\operatorname{cm}x\operatorname{cm}2y+\operatorname{sm}y\operatorname{cm}3x+\operatorname{sm}y\operatorname{cm}3y)}{\operatorname{sm}2x\operatorname{cm}4y+\operatorname{sm}x\operatorname{cm}2x\operatorname{sm}y\operatorname{cm}2y+\operatorname{cm}4x\operatorname{sm}2y}\\[4mu] &    +\omega

\operatorname{sm
y

(\operatorname{sm}x\operatorname{cm}3x+\operatorname{sm}x\operatorname{cm}3y+\operatorname{cm}2x\operatorname{sm}y\operatorname{cm}y)}{\operatorname{sm}2x\operatorname{cm}4y+\operatorname{sm}x\operatorname{cm}2x\operatorname{sm}y\operatorname{cm}2y+\operatorname{cm}4x\operatorname{sm}2y} \end{aligned}

Multiple-argument identities

Argument duplication and triplication identities can be derived from the sum identity:[8]

\begin{align} \operatorname{cm}2u&=

\operatorname{cm
3

u-\operatorname{sm}3u} {\operatorname{cm}u(1+\operatorname{sm}3u)}=

2\operatorname{cm
3

u-1} {2\operatorname{cm}u-\operatorname{cm}4u},\\[5mu] \operatorname{sm}2u&=

\operatorname{sm
u

(1+\operatorname{cm}3u)} {\operatorname{cm}u(1+\operatorname{sm}3u)}=

2\operatorname{sm
u

-\operatorname{sm}4u} {2\operatorname{cm}u-\operatorname{cm}4u},\\[5mu] \operatorname{cm}3u&=

\operatorname{cm
9

u-6\operatorname{cm}6u+3\operatorname{cm}3u+1} {\operatorname{cm}9u+3\operatorname{cm}6u-6\operatorname{cm}3u+1},\\[5mu] \operatorname{sm}3u&=

3\operatorname{sm
u

\operatorname{cm}u(\operatorname{sm}3u\operatorname{cm}3u-1)} {\operatorname{cm}9u+3\operatorname{cm}6u-6\operatorname{cm}3u+1}. \end{align}

From these formulas it can be deduced that expressions in form
\operatorname{cm}(k\pi3
2n3m

)

and
\operatorname{sm}(k\pi3
2n3m

)

are either signless infinities, or origami-constructibles for any

n,m,k\inN

(In this paragraph,

M=

set of all origami-constructibles

\cup\{infty}\

). Because by finding
\operatorname{cm}(x
2

)

, quartic or lesser degree in some cases equation has to be solved as seen from duplication formula which means that if

\operatorname{cm}x\inM

, then
\operatorname{cm}(x
2

)\inM

. To find one-third of argument value of cm, equation which is reductible to cubic or lesser degree in some cases by variable exchange

t=x3

has to be solved as seen from triplication formula from that follows: if

\operatorname{cm}x\inM

then
\operatorname{cm}(x
3

)\inM

is true. Statement

\operatorname{cm}x\inM

\operatorname{cm}(nx)\inM

is true, because any multiple argument formula is a rational function. If

\operatorname{cm}x\inM

, then

\operatorname{sm}x\inM

because

\operatorname{sm}x=\omegap\sqrt[3]{1-\operatorname{cm}3x}

where

p\in\{0,1,2\}

.

Specific value identities

The

\operatorname{cm}

function satisfies the identities\begin\operatorname\tfrac29\pi_3 &= -\operatorname\tfrac19 \pi_3\, \operatorname\tfrac49\pi_3, \\[5mu]\operatorname\tfrac14\pi_3 &= \operatorname\tfrac13\varpi,\end

where

\operatorname{cl}

is lemniscate cosine and

\varpi

is Lemniscate constant.

Power series

The and functions can be approximated for

|z|<\tfrac13\pi3

by the Taylor series

\begin{aligned} \operatorname{cm}z&=c0+

3
c
1z

+

6
c
2z

+

9
c
3z

++

3n
c
nz

+\\[4mu] \operatorname{sm}z&=s0z+

4
s
1z

+

7
s
2z

+

10
s
3z

++

3n+1
s
nz

+\end{aligned}

whose coefficients satisfy the recurrence

c0=s0=1,

[9]

\begin{aligned} cn&=-

1
3n
n-1
\sum
k=0

sksn-1-k\\[4mu] sn&=

1
3n+1
n
\sum
k=0

ckcn-k\end{aligned}

These recurrences result in:[10]

\begin{aligned} \operatorname{cm}z&=1-

1
3

z3+

1
18

z6-

23
2268

z9+

25
13608

z12-

619
1857492

z15+\\[8mu] \operatorname{sm}z&=z-

1
6

z4+

2
63

z7-

13
2268

z10+

23
22113

z13-

2803
14859936

z16+ \end{aligned}

Relation to other elliptic functions

Weierstrass elliptic function

\wp(z)=\wpl(z;0,\tfrac1{27}r),

with lattice

Λ=\pi3Z\pi3\omegaZ

a scaling of the Eisenstein integers, can be defined as:[11]

\wp(z)=

1
z2

+\sumλ\inΛ\setminus\{0\

}\!\left(\frac 1 - \frac 1 \right)

The function

\wp(z)

solves the differential equation:

\wp'(z)2=4\wp(z)3-\tfrac1{27}

We can also write it as the inverse of the integral:

z=

\wp(z)
\int
infty
dw
\sqrt{4w3-\tfrac1{27
}}

In terms of

\wp(z)

, the Dixon elliptic functions can be written:[12]

\operatorname{cm}z=

3\wp'(z)+1
3\wp'(z)-1

, \operatorname{sm}z=

-6\wp(z)
3\wp'(z)-1

Likewise, the Weierstrass elliptic function

\wp(z)=\wpl(z;0,\tfrac1{27}r)

can be written in terms of Dixon elliptic functions:

\wp'(z)=

\operatorname{cm
z

+1}{3(\operatorname{cm}z-1)}, \wp(z)=

-\operatorname{sm
z}{3(\operatorname{cm}

z-1)}

Jacobi elliptic functions

The Dixon elliptic functions can also be expressed using Jacobi elliptic functions, which was first observed by Cayley.[13] Let

k=e5

,

\theta=

1
4
3

e5

,

s=\operatorname{sn}(u,k)

,

c=\operatorname{cn}(u,k)

, and

d=\operatorname{dn}(u,k)

. Then, let

\xi(u)=

-1+\thetascd
1+\thetascd
,

η(u)=

21/3\left(1+\theta2s2\right)
1+\thetascd
.

Finally, the Dixon elliptic functions are as so:

\operatorname{sm}(z)=\xi\left(

z+\pi3/6
21/3\theta

\right)

,

\operatorname{cm}(z)=η\left(

z+\pi3/6
21/3\theta

\right)

.

Generalized trigonometry

Several definitions of generalized trigonometric functions include the usual trigonometric sine and cosine as an

n=2

case, and the functions sm and cm as an

n=3

case.[14]

For example, defining

\pin=\Betal(\tfrac1n,\tfrac1nr)

and

\sinnz,\cosnz

the inverses of an integral:

z=

\sinnz
\int
0
dw
(1-wn)(n-1)/n

=

1
\int
\cosnz
dw
(1-wn)(n-1)/n

The area in the positive quadrant under the curve

xn+yn=1

is
1
\int
0

(1-xn)1/ndx=

\pin
2n
.

The quartic

n=4

case results in a square lattice in the complex plane, related to the lemniscate elliptic functions.

Applications

The Dixon elliptic functions are conformal maps from an equilateral triangle to a disk, and are therefore helpful for constructing polyhedral conformal map projections involving equilateral triangles, for example projecting the sphere onto a triangle, hexagon, tetrahedron, octahedron, or icosahedron.[15]

See also

References

External links

x3+y3=z3

, the Dixonian elliptic functions, and the Borwein cubic theta functions”, https://math.stackexchange.com/q/2090523/

Notes and References

  1. Dixon (1890), Dillner (1873). Dillner uses the symbols

    W=\operatorname{sm},W1=\operatorname{cm}.

  2. Dixon (1890), Van Fossen Conrad & Flajolet (2005), Robinson (2019).
  3. The mapping for a general regular polygon is described in Schwarz (1869).
  4. van Fossen Conrad & Flajolet (2005) p. 6.
  5. Dillner (1873) calls the period

    3w

    . Dixon (1890) calls it

    ; Adams (1925) and Robinson (2019) each call it

    3K

    . Van Fossen Conrad & Flajolet (2005) call it

    \pi3

    . Also see OEIS A197374.
  6. Dixon (1890), Van Fossen Conrad & Flajolet (2005)
  7. Dixon (1890), Adams (1925)
  8. Dixon (1890), p. 185–186. Robinson (2019).
  9. Adams (1925)
  10. van Fossen Conrad & Flajolet (2005). Also see OEIS A104133, A104134.
  11. Reinhardt & Walker (2010)
  12. Chapling (2018), Robinson (2019). Adams (1925) instead expresses the Dixon elliptic functions in terms of the Weierstrass elliptic function

    \wp(z;0,-1).

  13. van Fossen Conrad & Flajolet (2005), p.38
  14. Lundberg (1879), Grammel (1948), Shelupsky (1959), Burgoyne (1964), Gambini, Nicoletti, & Ritelli (2021).
  15. Adams (1925), Cox (1935), Magis (1938), Lee (1973), Lee (1976), McIlroy (2011), Chapling (2016).