In physics, the distorted Schwarzschild metric is the metric of a standard/isolated Schwarzschild spacetime exposed in external fields. In numerical simulation, the Schwarzschild metric can be distorted by almost arbitrary kinds of external energy–momentum distribution. However, in exact analysis, the mature method to distort the standard Schwarzschild metric is restricted to the framework of Weyl metrics.
All static axisymmetric solutions of the Einstein–Maxwell equations can be written in the form of Weyl's metric,[1]
(1) ds2=-e2\psi(\rho,z)dt2+e2\gamma(\rho,z)-2\psi(\rho,z)(d\rho2+dz2)+e-2\psi(\rho,z)\rho2d\phi2,
From the Weyl perspective, the metric potentials generating the standard Schwarzschild solution are given by[2]
(2) \psiSS=
1 | ln | |
2 |
L-M | |
L+M |
, \gammaSS=
1 | ln | |
2 |
L2-M2 | |
l+l- |
,
where
(3) L=
1 | |
2 |
(l++l-), l+=\sqrt{\rho2+(z+M)2}, l-=\sqrt{\rho2+(z-M)2},
which yields the Schwarzschild metric in Weyl's canonical coordinates that
(4)
| ||||
ds |
| ||||
dt |
(d\rho2+dz
| ||||
\rho2d\phi2.
Vacuum Weyl spacetimes (such as Schwarzschild) respect the following field equations,
(5.a) \nabla2\psi=0,
(5.b) \gamma,\rho
2 | |
=\rho(\psi | |
,\rho |
2 | |
-\psi | |
,z |
),
(5.c) \gamma,z=2\rho\psi,\rho\psi,z,
(5.d) \gamma,\rho\rho+\gamma,zz
2 | |
=-(\psi | |
,\rho |
2 | |
+\psi | |
,z |
),
where
\nabla2:=\partial\rho\rho+
1 | |
\rho |
\partial\rho+\partialzz
Derivation of vacuum field equations. The vacuum Einstein's equation reads
Rab=0
Moreover, the supplementary relation
R=0
Eq(5.a) is the linear Laplace's equation; that is to say, linear combinations of given solutions are still its solutions. Given two solutions
\{\psi\langle1\rangle,\psi\langle2\rangle\}
(6) \tilde\psi=\psi\langle1\rangle+\psi\langle2\rangle,
and the other metric potential can be obtained by
(7) \tilde\gamma=\gamma\langle1\rangle+\gamma\langle2\rangle+2\int\rho\{(
\langle1\rangle | |
\psi | |
,\rho |
\langle2\rangle | |
\psi | |
,\rho |
\langle1\rangle | |
-\psi | |
,z |
\langle2\rangle | |
\psi | |
,z |
)d\rho+(
\langle1\rangle | |
\psi | |
,\rho |
\langle2\rangle | |
\psi | |
,z |
\langle1\rangle | |
+\psi | |
,z |
\langle2\rangle | |
\psi | |
,\rho |
)dz\}.
Let
\psi\langle1\rangle=\psiSS
\gamma\langle1\rangle=\gammaSS
\psi\langle2\rangle=\psi
\gamma\langle2\rangle=\gamma
\{\tilde\psi,\tilde\gamma\}
(8) ds2=-e2\psi(\rho,z)
L-M | |
L+M |
dt2+e2\gamma(\rho,z)-2\psi(\rho,z)
(L+M)2 | |
l+l- |
(d\rho2+dz2)+e-2\psi(\rho,z)
L+M | |
L-M |
\rho2d\phi2.
With the transformations
(9) L+M=r, l++l-=2M\cos\theta, z=(r-M)\cos\theta,
\rho=\sqrt{r2-2Mr}\sin\theta, l+
2-M | |
l | |
-=(r-M) |
2\cos2\theta,
one can obtain the superposed Schwarzschild metric in the usual
\{t,r,\theta,\phi\}
(10) ds2=-e2\psi(r,\theta)(1-
2M | |
r |
)dt2+e2\gamma(r,\theta)-2\psi(r,\theta)\{(1-
2M | |
r |
)-1dr2+r2d\theta2\}+e-2\psi(r,\theta)r2\sin2\thetad\phi2.
The superposed metric Eq(10) can be regarded as the standard Schwarzschild metric distorted by external Weyl sources. In the absence of distortion potential
\{\psi(\rho,z)=0,\gamma(\rho,z)=0\}
(11)
| ||||
ds |
| ||||
)dt |
)-1dr2+r2d\theta2+r2\sin2\thetad\phi2.
Similar to the exact vacuum solutions to Weyl's metric in spherical coordinates, we also have series solutions to Eq(10). The distortion potential
\psi(r,\theta)
(12)
infty | |
\psi(r,\theta)=-\sum | |
i=1 |
ai(
Rn(\cos\theta) | |
M |
)Pi
R:=[(1- | 2M |
r |
)r2+M2\cos2\theta]1/2
where
(13) Pi:=p
|
)
denotes the Legendre polynomials and
ai
\gamma(r,\theta)
(14)
infty | |
\gamma(r,\theta)=\sum | |
i=1 |
infty | |
\sum | |
j=0 |
aiaj
( | ij |
i+j |
)
( | R |
M |
)i+j
(PiPj-Pi-1Pj-1)
- | 1 |
M |
infty | |
\sum | |
i=1 |
\alphai
i-1 | |
\sum | |
j=0 |
[(-1)i+j(r-M(1-\cos\theta))+r-M(1+\cos\theta)]
( | R |
M |
)jPj.