Distichlis palmeri explained
Distichlis palmeri is an obligate emergent (it has aerenchyma) perennial rhizomatous dioecious halophytic C4 grass in the Poaceae (Gramineae) family. D. palmeri is a saltwater marsh grass endemic to the tidal marshes of the northern part of the Gulf of California and Islands section of the Sonoran Desert.[1] [2] [3] [4] D. palmeri is not drought tolerant. It does withstand surface drying between supra tidal events because roots extend downward to more than 1 meter (3 feet) where coastal substrata is still moist.
Culms (stalks) are generally rigid and upright to about 60 cm (2 feet) and have short internodes. Longer culms become recumbent (lay down) developing young vertical culms from the nodes. These young culms may root. Acicular to linear leaves are upright and positioned alternate along the culm at nodes. Leaves excrete salts through specialized salt glands that are a component of D. palmeri leaf anatomy.[5] [6] These excreted surface salts are wicked away by breezes. Insects of the grasshopper family visit the plant. When maintained in a greenhouse, it is susceptible to aphid infestation.
Anemophilous flowers emerge late winter. At anthesis, males liberate light chartreuse colored pollen in breezes. Female flowers are panicles of alternate spikelets that present lavender colored styles and stigmas. Kernels (seeds) are mature in early spring. Each panicle produces 20-30 mature caryopses. Kernels are similar to those of farro in color and size. Kernels of Distichlis palmeri have an indigenous history as a wild harvest grain (Nipa) consumed by the Cocopah. Nipa grain has size, nutritional value and flavor qualities similar to other cropped grains.[7] [8] [9]
In the last four decades, Nipa grain production through saline agriculture (agriculture that uses saline resources to farm halophytic cash crops) of D. palmeri has been the subject of domestication studies.[10] [11] [12] [13]
In addition to research studies working to domesticate D. palmeri, the species has been used to manage farm drainage and has been proposed as a constructive use plant in remediation of saline and biosaline wastewaters and land.[14] [15] [16]
Distichlis palmeri can grow in open hot full sun on saline irrigation in subtropic zones; hence, it can be cropped along warming and rising coastlines and is an active candidate for (bio)saline agriculture and cash crop development of Nipa grain.[17] [18] [19] [20]
External links
Notes and References
- Web site: Richard Stephen . Felger . 5 February 2011 . Nipa: Un Tesoro Sonorense para el Mundo . Nipa: A Sonoran Treasure for the World . obson.wordpress.com . 2022-02-02 . es.
- Book: Bresdin . Cylphine . Glenn . Edward P. . 2016 . Distichlis palmeri: An Endemic Grass in the Coastal Sabkhas of the Northern Gulf of California and a Potential New Grain Crop for Saltwater Agriculture . Sabkha Ecosystems . 48 . 389–396 . Khan . M. Ajmal . Boër . Benno . Ȫzturk . Münir . Clüsener-Godt . Miguel . Cham . Springer International Publishing . 10.1007/978-3-319-27093-7_21 . 978-3-319-27091-3 .
- Web site: Distichlis palmeri: Perennial Grain Yields under Saline Paddy-style Cultivation of Grains on Seawater : Journal of Agriculture and Environmental Sciences. 2022-02-02 . jaesnet.com.
- Pearlstein. S. L.. Felger. R. S.. Glenn. E. P.. Harrington. J.. Al-Ghanem. K. A.. Nelson. S. G.. 2012-07-01. Nipa (Distichlis palmeri): A perennial grain crop for saltwater irrigation. Journal of Arid Environments. en. 82. 60–70. 10.1016/j.jaridenv.2012.02.009. 2012JArEn..82...60P . 0140-1963.
- Flowers . T.J. . 1985 . Physiology of Halophytes . Plant and Soil . 89 . 1–3 . 41–56. 10.1007/BF02182232 . 1985PlSoi..89...41F . 36122029 .
- Glenn . Edward P. . Brown . J. Jed . Blumwald . Eduardo . 1999 . Salt Tolerance and Crop Potential of Halophytes . Critical Reviews in Plant Sciences . en . 18 . 2 . 227–255 . 10.1080/07352689991309207 . 1999CRvPS..18..227G . 0735-2689.
- Yensen . S. B. . Weber . C. W. . 1986 . Composition of Disfichlis palmeri grain, a saltgrass . Journal of Food Science . en . 51 . 4 . 1089–1090 . 10.1111/j.1365-2621.1986.tb11246.x . 0022-1147.
- Web site: Yensen . Susana . CHARACTERIZATION OF THE PROTEINS AND FLOUR OF DISTICHLlS PALMERI (VASEY) GRAIN AND DISTICHLlS SPP. FIBER . July 11, 2013.
- Glenn . Edward P. . Anday . Tekie . Chaturvedi . Rahul . Martinez-Garcia . Rafael . Pearlstein . Susanna . Soliz . Deserie . Nelson . Stephen G. . Felger . Richard S. . 2013 . Three halophytes for saline-water agriculture: An oilseed, a forage and a grain crop . Environmental and Experimental Botany . en . 92 . 110–121 . 10.1016/j.envexpbot.2012.05.002. 2013EnvEB..92..110G .
- Edward P. . Glenn . J. Jed . Brown . James W. . O'Leary . August 1998 . Irrigating Crops with Seawater . Scientific American . 279 . 2 . 76–81. 10.1038/scientificamerican0898-76 . 1998SciAm.279b..76G .
- US. 4767887. 1988-08-30. Yensen 1a. Salt Weeds. Yensen. Nicholas P.. . A variety, Yensen 1a, of Distichlis palmeri, characterized by vigorous growth in salty soils, high grain yield and ideal form for harvest, and for human consumption.
- US. 4767889. 1988-08-30. Yensen 2a. Salt Weeds. Yensen. Nicholas P.. . A grain variety, Yensen 2a, of Distichlis palmeri, which are characterized by vigorous growth in salty soils, high grain yield and ideal form for harvest. This grain variety has excellent taste qualities.
- Web site: NEW FOOD CROPS . 2022-02-02 . flora . en.
- From Toxicity to Profitability: Environmental Stewardship via Integrated Farm Drainage Management (IFDM), Andrews, M. (2012), Bakersfield, California
- John . Leake . Ed . Barrett-Lennard . Mark . Sargeant . Nicholas . Yensen . Johnny . Prefumo . December 2002 . NyPa Distichlis Cultivars: Rehabilitation of Highly Saline Areas for Forage Turf and Grain . RIRDC Publication No 02/154 . RIRDC Project No NYP-1A.
- Book: Bresdin . Cylphine . Livingston . Margaret . Glenn . Edward P. . 2016 . Design Concept of a Reverse Osmosis Reject Irrigated Landscape: Connecting Source to Sabkha . Sabkha Ecosystems . 48 . 237–250 . Khan . M. Ajmal . Boër . Benno . Ȫzturk . Münir . Clüsener-Godt . Miguel . Cham . Springer International Publishing . 10.1007/978-3-319-27093-7_12 . 978-3-319-27091-3 .
- Van Tassel . David . DeHaan . Lee . 2013 . Wild Plants to the Rescue . American Scientist . en . 100 . 3 . 218 . 10.1511/2013.102.218 . 0003-0996 . 2 February 2022 . 14 August 2013 . https://web.archive.org/web/20130814191107/http://www.americanscientist.org/issues/feature/2013/3/wild-plants-to-the-rescue . dead .
- Fedoroff . N. V. . Battisti . D. S. . Beachy . R. N. . Cooper . P. J. M. . Fischhoff . D. A. . Hodges . C. N. . Knauf . V. C. . Lobell . D. . Mazur . B. J. . Molden . D. . Reynolds . M. P. . 2010-02-12 . Radically Rethinking Agriculture for the 21st Century . Science . en . 327 . 5967 . 833–834 . 10.1126/science.1186834 . 0036-8075 . 3137512 . 20150494. 2010Sci...327..833F .
- Ventura . Yvonne . Eshel . Amram . Pasternak . Dov . Sagi . Moshe . 2015 . The development of halophyte-based agriculture: past and present . Annals of Botany . en . 115 . 3 . 529–540 . 10.1093/aob/mcu173 . 1095-8290 . 4332600 . 25122652.
- Book: Brown . J. Jed . Glenn . Edward P. . Smith . S. E. . 2014 . Feasibility of Halophyte Domestication for High-Salinity Agriculture . Sabkha Ecosystems: Volume IV: Cash Crop Halophyte and Biodiversity Conservation . 47 . 73–80 . Khan . M. Ajmal . Böer . Benno . Öztürk . Münir . Al Abdessalaam . Thabit Zahran . Dordrecht . Springer Netherlands . 10.1007/978-94-007-7411-7_5 . 978-94-007-7410-0 .