In physics, the dissipation factor (DF) is a measure of loss-rate of energy of a mode of oscillation (mechanical, electrical, or electromechanical) in a dissipative system. It is the reciprocal of quality factor, which represents the "quality" or durability of oscillation.
Electrical potential energy is dissipated in all dielectric materials, usually in the form of heat. In a capacitor made of a dielectric placed between conductors, the typical lumped element model includes a lossless ideal capacitor in series with a resistor termed the equivalent series resistance (ESR) as shown below.[1] The ESR represents losses in the capacitor. In a good capacitor the ESR is very small, and in a poor capacitor the ESR is large. However, ESR is sometimes a minimum value to be required. Note that the ESR is not simply the resistance that would be measured across a capacitor by an ohmmeter. The ESR is a derived quantity with physical origins in both the dielectric's conduction electrons and dipole relaxation phenomena. In dielectric only one of either the conduction electrons or the dipole relaxation typically dominates loss.[2] For the case of the conduction electrons being the dominant loss, then
ESR=
\sigma | |
\varepsilon\omega2C |
where
\sigma
\varepsilon
\omega=2\pif
C
If the capacitor is used in an AC circuit, the dissipation factor due to the non-ideal capacitor is expressed as the ratio of the resistive power loss in the ESR to the reactive power oscillating in the capacitor, or
DF=
i2ESR | |
i2\left|Xc\right| |
=\omegaCESR=
\sigma | |
\varepsilon\omega |
=
1 | |
Q |
When representing the electrical circuit parameters as vectors in a complex plane, known as phasors, a capacitor's dissipation factor is equal to the tangent of the angle between the capacitor's impedance vector and the negative reactive axis, as shown in the adjacent diagram. This gives rise to the parameter known as the loss tangent tan δ where
1 | |
Q |
=\tan(\delta)=
ESR | |
\left|Xc\right| |
=DF
Alternatively,
ESR
ESR=
1 | |
\omegaC |
\tan(\delta)
Since the
DF
\delta\simDF
DF
DF
ESR
Xc
DF
DF
DF
DF