In mathematics, the Heisenberg group
H
\begin{pmatrix} 1&a&c\\ 0&1&b\\ 0&0&1\\ \end{pmatrix}
under the operation of matrix multiplication. Elements a, b and c can be taken from any commutative ring with identity, often taken to be the ring of real numbers (resulting in the "continuous Heisenberg group") or the ring of integers (resulting in the "discrete Heisenberg group").
The continuous Heisenberg group arises in the description of one-dimensional quantum mechanical systems, especially in the context of the Stone–von Neumann theorem. More generally, one can consider Heisenberg groups associated to n-dimensional systems, and most generally, to any symplectic vector space.
In the three-dimensional case, the product of two Heisenberg matrices is given by:
\begin{pmatrix} 1&a&c\\ 0&1&b\\ 0&0&1\\ \end{pmatrix} \begin{pmatrix} 1&a'&c'\\ 0&1&b'\\ 0&0&1\\ \end{pmatrix}= \begin{pmatrix} 1&a+a'&c+ab'+c'\\ 0&1&b+b'\\ 0&0&1\\ \end{pmatrix}.
The neutral element of the Heisenberg group is the identity matrix, and inverses are given by
\begin{pmatrix} 1&a&c\\ 0&1&b\\ 0&0&1\\ \end{pmatrix}-1= \begin{pmatrix} 1&-a&ab-c\\ 0&1&-b\\ 0&0&1\\ \end{pmatrix}.
The group is a subgroup of the 2-dimensional affine group Aff(2):
\begin{pmatrix} 1&a&c\\ 0&1&b\\ 0&0&1\\ \end{pmatrix}
(\vec{x},1)
\begin{pmatrix} 1&a\\ 0&1\end{pmatrix}{\vecx}+\begin{pmatrix} c\\ b \end{pmatrix}
There are several prominent examples of the three-dimensional case.
If, are real numbers (in the ring R) then one has the continuous Heisenberg group H3(R).
It is a nilpotent real Lie group of dimension 3.
In addition to the representation as real 3×3 matrices, the continuous Heisenberg group also has several different representations in terms of function spaces. By Stone–von Neumann theorem, there is, up to isomorphism, a unique irreducible unitary representation of H in which its centre acts by a given nontrivial character. This representation has several important realizations, or models. In the Schrödinger model, the Heisenberg group acts on the space of square integrable functions. In the theta representation, it acts on the space of holomorphic functions on the upper half-plane; it is so named for its connection with the theta functions.
If, are integers (in the ring Z) then one has the discrete Heisenberg group H3(Z). It is a non-abelian nilpotent group. It has two generators,
x=\begin{pmatrix} 1&1&0\\ 0&1&0\\ 0&0&1\\ \end{pmatrix}, y=\begin{pmatrix} 1&0&0\\ 0&1&1\\ 0&0&1\\ \end{pmatrix}
and relations
z | |
=xyx-1y-1, xz=zx, yz=zy
where
z=\begin{pmatrix} 1&0&1\\ 0&1&0\\ 0&0&1\\ \end{pmatrix}
By Bass's theorem, it has a polynomial growth rate of order 4.
One can generate any element through
\begin{pmatrix} 1&a&c\\ 0&1&b\\ 0&0&1\\ \end{pmatrix}=ybzcxa.
If one takes a, b, c in Z/p Z for an odd prime p, then one has the Heisenberg group modulo p. It is a group of order p3 with generators x,y and relations:
z | |
=xyx-1y-1, xp=yp=zp=1, xz=zx, yz=zy.
Analogues of Heisenberg groups over finite fields of odd prime order p are called extra special groups, or more properly, extra special groups of exponent p. More generally, if the derived subgroup of a group G is contained in the center Z of G, then the map from G/Z × G/Z → Z is a skew-symmetric bilinear operator on abelian groups.
However, requiring that G/Z to be a finite vector space requires the Frattini subgroup of G to be contained in the center, and requiring that Z be a one-dimensional vector space over Z/p Z requires that Z have order p, so if G is not abelian, then G is extra special. If G is extra special but does not have exponent p, then the general construction below applied to the symplectic vector space G/Z does not yield a group isomorphic to G.
The Heisenberg group modulo 2 is of order 8 and is isomorphic to the dihedral group D4 (the symmetries of a square). Observe that if
x=\begin{pmatrix} 1&1&0\\ 0&1&0\\ 0&0&1\\ \end{pmatrix}, y=\begin{pmatrix} 1&0&0\\ 0&1&1\\ 0&0&1\\ \end{pmatrix}
Then
xy=\begin{pmatrix} 1&1&1\\ 0&1&1\\ 0&0&1\\ \end{pmatrix},
and
yx=\begin{pmatrix} 1&1&0\\ 0&1&1\\ 0&0&1\\ \end{pmatrix}.
The elements x and y correspond to reflections (with 45° between them), whereas xy and yx correspond to rotations by 90°. The other reflections are xyx and yxy, and rotation by 180° is xyxy (=yxyx).
The Lie algebra
akh
H
\begin{pmatrix} 0&a&c\\ 0&0&b\\ 0&0&0\\ \end{pmatrix},
a,b,c\inR
The following three elements form a basis for
akh
X=\begin{pmatrix} 0&1&0\\ 0&0&0\\ 0&0&0\\ \end{pmatrix}; Y=\begin{pmatrix} 0&0&0\\ 0&0&1\\ 0&0&0\\ \end{pmatrix}; Z=\begin{pmatrix} 0&0&1\\ 0&0&0\\ 0&0&0\\ \end{pmatrix}.
[X,Y]=Z; [X,Z]=0; [Y,Z]=0
The name "Heisenberg group" is motivated by the preceding relations, which have the same form as the canonical commutation relations in quantum mechanics,
\left[\hatx,\hatp\right]=i\hbarI; \left[\hatx,i\hbarI\right]=0; \left[\hatp,i\hbarI\right]=0,
\hatx
\hatp
\hbar
The Heisenberg group has the special property that the exponential map is a one-to-one and onto map from the Lie algebra
akh
\exp\begin{pmatrix} 0&a&c\\ 0&0&b\\ 0&0&0\\ \end{pmatrix}=\begin{pmatrix} 1&a&c+
ab | |
2\\ |
0&1&b\\ 0&0&1\\ \end{pmatrix}.
In conformal field theory, the term Heisenberg algebra is used to refer to an infinite-dimensional generalization of the above algebra. It is spanned by elements
an,n\inZ
[an,am]=\deltan+m,.
More general Heisenberg groups
H2n+1
2n+1
n\geq1
H2n+1
H2n+1(R)
R
(n+2) x (n+2)
R
\begin{bmatrix}1&a&c\ 0&In&b\ 0&0&1\end{bmatrix}
where
a is a row vector of length n,
b is a column vector of length n,
In is the identity matrix of size n.
This is indeed a group, as is shown by the multiplication:
\begin{bmatrix}1&a&c\ 0&In&b\ 0&0&1\end{bmatrix} ⋅ \begin{bmatrix}1&a'&c'\ 0&In&b'\ 0&0&1\end{bmatrix}=\begin{bmatrix}1&a+a'&c+c'+a ⋅ b'\ 0&In&b+b'\ 0&0&1\end{bmatrix}
and
\begin{bmatrix}1&a&c\ 0&In&b\ 0&0&1\end{bmatrix} ⋅ \begin{bmatrix}1&-a&-c+a ⋅ b\ 0&In&-b\ 0&0&1\end{bmatrix}=\begin{bmatrix}1&0&0\ 0&In&0\ 0&0&1\end{bmatrix}.
The Heisenberg group is a simply-connected Lie group whose Lie algebra consists of matrices
\begin{bmatrix}0&a&c\ 0&0n&b\ 0&0&0\end{bmatrix},
where
a is a row vector of length n,
b is a column vector of length n,
0n is the zero matrix of size n.
By letting e1, ..., en be the canonical basis of Rn, and setting
\begin{align} pi&=\begin{bmatrix}0&
T | |
\operatorname{e} | |
i |
&0\ 0&0n&0\ 0&0&0\end{bmatrix},\\ qj&=\begin{bmatrix}0&0&0\ 0&0n&\operatorname{e}j\ 0&0&0\end{bmatrix},\\ z&=\begin{bmatrix}0&0&1\ 0&0n&0\ 0&0&0\end{bmatrix}, \end{align}
the associated Lie algebra can be characterized by the canonical commutation relations,
where p1, ..., pn, q1, ..., qn, z are the algebra generators.
In particular, z is a central element of the Heisenberg Lie algebra. Note that the Lie algebra of the Heisenberg group is nilpotent.
Let
u=\begin{bmatrix}0&a&c\ 0&0n&b\ 0&0&0\end{bmatrix},
which fulfills
u3=0n+2
\exp(u)=
infty | |
\sum | |
k=0 |
1 | |
k! |
uk=In+2+u+\tfrac{1}{2}u2=\begin{bmatrix}1&a&c+{1\over2}a ⋅ b\ 0&In&b\ 0&0&1\end{bmatrix}.
This discussion (aside from statements referring to dimension and Lie group) further applies if we replace R by any commutative ring A. The corresponding group is denoted Hn(A).
Under the additional assumption that the prime 2 is invertible in the ring A, the exponential map is also defined, since it reduces to a finite sum and has the form above (e.g. A could be a ring Z/p Z with an odd prime p or any field of characteristic 0).
See main article: Stone–von Neumann theorem.
The unitary representation theory of the Heisenberg group is fairly simple – later generalized by Mackey theory – and was the motivation for its introduction in quantum physics, as discussed below.
For each nonzero real number
\hbar
\Pi\hbar
H2n+1
L2(Rn)
\left[\Pi\hbar\begin{pmatrix}1&a&c\ 0&In&b\ 0&0&1\end{pmatrix}\psi\right](x)=ei\hbareib ⋅ \psi(x+\hbara)
This representation is known as the Schrödinger representation. The motivation for this representation is the action of the exponentiated position and momentum operators in quantum mechanics. The parameter
a
b
c
The key result is the Stone–von Neumann theorem, which states that every (strongly continuous) irreducible unitary representation of the Heisenberg group in which the center acts nontrivially is equivalent to
\Pi\hbar
\hbar
Since the Heisenberg group is a one-dimensional central extension of
R2n
R2n
R2n
R2n
\{xi,pj\}=\deltai,j.
R2n
The general abstraction of a Heisenberg group is constructed from any symplectic vector space.[6] For example, let (V, ω) be a finite-dimensional real symplectic vector space (so ω is a nondegenerate skew symmetric bilinear form on V). The Heisenberg group H(V) on (V, ω) (or simply V for brevity) is the set V×R endowed with the group law
(v,t) ⋅ \left(v',t'\right)=\left(v+v',t+t'+
1 | |
2 |
\omega\left(v,v'\right)\right).
The Heisenberg group is a central extension of the additive group V. Thus there is an exact sequence
0\toR\toH(V)\toV\to0.
Any symplectic vector space admits a Darboux basis 1 ≤ j,k ≤ n satisfying ω(ej, fk) = δjk and where 2n is the dimension of V (the dimension of V is necessarily even). In terms of this basis, every vector decomposes as
v=
ae | |
q | |
a |
+
a. | |
p | |
af |
The qa and pa are canonically conjugate coordinates.
If 1 ≤ j,k ≤ n is a Darboux basis for V, then let be a basis for R, and 1 ≤ j,k ≤ n is the corresponding basis for V×R. A vector in H(V) is then given by
v=
ae | |
q | |
a |
+
a | |
p | |
af |
+tE
and the group law becomes
(p,q,t) ⋅ \left(p',q',t'\right)=\left(p+p',q+q',t+t'+
1 | |
2 |
(pq'-p'q)\right).
Because the underlying manifold of the Heisenberg group is a linear space, vectors in the Lie algebra can be canonically identified with vectors in the group. The Lie algebra of the Heisenberg group is given by the commutation relation
\begin{bmatrix}(v1,t1),(v2,t2)\end{bmatrix}=\omega(v1,v2)
or written in terms of the Darboux basis
\left[ea,fb\right]=
b | |
\delta | |
a |
and all other commutators vanish.
It is also possible to define the group law in a different way but which yields a group isomorphic to the group we have just defined. To avoid confusion, we will use u instead of t, so a vector is given by
v=
ae | |
q | |
a |
+
a | |
p | |
af |
+uE
and the group law is
(p,q,u) ⋅ \left(p',q',u'\right)=\left(p+p',q+q',u+u'+pq'\right).
An element of the group
v=
ae | |
q | |
a |
+
a | |
p | |
af |
+uE
\begin{bmatrix} 1&p&u\\ 0&In&q\\ 0&0&1 \end{bmatrix}
u=t+\tfrac{1}{2}pq
\begin{align} &u+u'+pq'-
1 | |
2 |
\left(p+p'\right)\left(q+q'\right)\\ ={}&t+
1 | |
2 |
pq+t'+
1 | |
2 |
p'q'+pq'-
1 | |
2 |
\left(p+p'\right)\left(q+q'\right)\\ ={}&t+t'+
1 | |
2 |
\left(pq'-p'q\right) \end{align}
The isomorphism to the group using upper triangular matrices relies on the decomposition of V into a Darboux basis, which amounts to a choice of isomorphism V ≅ U ⊕ U*. Although the new group law yields a group isomorphic to the one given higher up, the group with this law is sometimes referred to as the polarized Heisenberg group as a reminder that this group law relies on a choice of basis (a choice of a Lagrangian subspace of V is a polarization).
To any Lie algebra, there is a unique connected, simply connected Lie group G. All other connected Lie groups with the same Lie algebra as G are of the form G/N where N is a central discrete group in G. In this case, the center of H(V) is R and the only discrete subgroups are isomorphic to Z. Thus H(V)/Z is another Lie group which shares this Lie algebra. Of note about this Lie group is that it admits no faithful finite-dimensional representations; it is not isomorphic to any matrix group. It does however have a well-known family of infinite-dimensional unitary representations.
See main article: Weyl algebra. The Lie algebra
ak{h}n
U(ak{h}n)
ak{h}n
By the Poincaré–Birkhoff–Witt theorem, it is thus the free vector space generated by the monomials
zj
k1 | |
p | |
1 |
k2 | |
p | |
2 |
…
kn | |
p | |
n |
\ell1 | |
q | |
1 |
\ell2 | |
q | |
2 |
…
\elln | |
q | |
n |
~,
Consequently,
U(ak{h}n)
\sumj,,\vec{\ell}}cj\vec{\ell}}zj
k1 | |
p | |
1 |
k2 | |
p | |
2 |
…
kn | |
p | |
n |
\ell1 | |
q | |
1 |
\ell2 | |
q | |
2 |
…
\elln | |
q | |
n |
~,
pkp\ell=p\ellpk, qkq\ell=q\ellqk, pkq\ell-q\ellpk=\deltakz, zpk-pkz=0, zqk-qkz=0~.
The algebra
U(ak{h}n)
Rn
P=\sum\vec{k,\vec{\ell}}c\vec{k\vec{\ell}}
k1 | |
\partial | |
x1 |
k2 | |
\partial | |
x2 |
…
kn | |
\partial | |
xn |
\ell1 | |
x | |
1 |
\ell2 | |
x | |
2 |
…
\elln | |
x | |
n |
~.
This algebra is called the Weyl algebra. It follows from abstract nonsense that the Weyl algebra Wn is a quotient of
U(ak{h}n)
zj
k1 | |
p | |
1 |
k2 | |
p | |
2 |
…
kn | |
p | |
n |
\ell1 | |
q | |
1 |
\ell2 | |
q | |
2 |
…
\elln | |
q | |
n |
\mapsto
k1 | |
\partial | |
x1 |
k2 | |
\partial | |
x2 |
…
kn | |
\partial | |
xn |
\ell1 | |
x | |
1 |
\ell2 | |
x | |
2 |
…
\elln | |
x | |
n |
~.
See main article: Wigner–Weyl transform. The application that led Hermann Weyl to an explicit realization of the Heisenberg group was the question of why the Schrödinger picture and Heisenberg picture are physically equivalent. Abstractly, the reason is the Stone–von Neumann theorem: there is a unique unitary representation with given action of the central Lie algebra element z, up to a unitary equivalence: the nontrivial elements of the algebra are all equivalent to the usual position and momentum operators.
Thus, the Schrödinger picture and Heisenberg picture are equivalent – they are just different ways of realizing this essentially unique representation.
See main article: theta representation. The same uniqueness result was used by David Mumford for discrete Heisenberg groups, in his theory of equations defining abelian varieties. This is a large generalization of the approach used in Jacobi's elliptic functions, which is the case of the modulo 2 Heisenberg group, of order 8. The simplest case is the theta representation of the Heisenberg group, of which the discrete case gives the theta function.
The Heisenberg group also occurs in Fourier analysis, where it is used in some formulations of the Stone–von Neumann theorem. In this case, the Heisenberg group can be understood to act on the space of square integrable functions; the result is a representation of the Heisenberg groups sometimes called the Weyl representation.
The three-dimensional Heisenberg group H3(R) on the reals can also be understood to be a smooth manifold, and specifically, a simple example of a sub-Riemannian manifold.[7] Given a point p=(x,y,z) in R3, define a differential 1-form Θ at this point as
\Thetap=dz-
1 | |
2 |
\left(xdy-ydx\right).
This one-form belongs to the cotangent bundle of R3; that is,
\Thetap:
3 | |
T | |
pR |
\toR
is a map on the tangent bundle. Let
Hp=\left\{v\in
3 | |
T | |
pR |
\mid\Thetap(v)=0\right\}.
It can be seen that H is a subbundle of the tangent bundle TR3. A cometric on H is given by projecting vectors to the two-dimensional space spanned by vectors in the x and y direction. That is, given vectors
v=(v1,v2,v3)
w=(w1,w2,w3)
\langlev,w\rangle=v1w1+v2w2.
The resulting structure turns H into the manifold of the Heisenberg group. An orthonormal frame on the manifold is given by the Lie vector fields
\begin{align} X&=
\partial | |
\partialx |
-
1 | y | |
2 |
\partial | |
\partialz |
,\\ Y&=
\partial | |
\partialy |
+
1 | x | |
2 |
\partial | |
\partialz |
,\\ Z&=
\partial | |
\partialz |
, \end{align}
which obey the relations [''X'', ''Y''] = Z and [''X'', ''Z''] = [''Y'', ''Z''] = 0. Being Lie vector fields, these form a left-invariant basis for the group action. The geodesics on the manifold are spirals, projecting down to circles in two dimensions. That is, if
\gamma(t)=(x(t),y(t),z(t))
is a geodesic curve, then the curve
c(t)=(x(t),y(t))
z(t)=
1 | |
2 |
\intcxdy-ydx
with the integral limited to the two-dimensional plane. That is, the height of the curve is proportional to the area of the circle subtended by the circular arc, which follows by Stokes' theorem.
\hat{K}
U(1)
L2(K)
\hat{K}
L2(K)
f
L2(K)
(Txf)(y)=f(x+y)
x,y\inK
(M\chif)(y)=\chi(y)f(y)
\chi\in\hat{K}
\left(TxM\chi
-1 | |
T | |
x |
-1 | |
M | |
\chi |
f\right)(y)=\overline{\chi(x)}f(y)
So the Heisenberg group
H(K)
K x \hat{K}
1\toU(1)\toH(K)\toK x \hat{K}\to0.
H2(K,U(1))
K
\hat{K}
The Heisenberg group acts irreducibly on
L2(K)
L2(K)
Linfty
A version of the Stone–von Neumann theorem, proved by George Mackey, holds for the Heisenberg group
H(K)
L2(K)
L2\left(\hat{K}\right)