In mathematics, the Dirichlet space on the domain
\Omega\subseteqC,l{D}(\Omega)
H2(\Omega)
l{D}(f):={1\over\pi}\iint\Omega|f\prime(z)|2dA={1\over4\pi}\iint\Omega|\partialxf|2+|\partialyf|2dxdy
is finite (here dA denotes the area Lebesgue measure on the complex plane
C
l{D}(\Omega)
l{D}(f)=0
For
f,g\inl{D}(\Omega)
l{D}(f,g):={1\over\pi}\iint\Omegaf'(z)\overline{g'(z)}dA(z).
This is a semi-inner product, and clearly
l{D}(f,f)=l{D}(f)
l{D}(\Omega)
\langlef,g\ranglel{D(\Omega)}:=\langlef,g
\rangle | |
H2(\Omega) |
+l{D}(f,g) (f,g\inl{D}(\Omega)),
where
\langle ⋅ , ⋅
\rangle | |
H2(\Omega) |
H2(\Omega).
\| ⋅ \|l{D(\Omega)}
2 | |
\|f\| | |
l{D |
(\Omega)}:=
2 | |
\|f\| | |
H2(\Omega) |
+l{D}(f) (f\inl{D}(\Omega)).
Note that this definition is not unique, another common choice is to take
\|f\|2=|f(c)|2+l{D}(f)
c\in\Omega
The Dirichlet space is not an algebra, but the space
l{D}(\Omega)\capHinfty(\Omega)
\|f\|l{D(\Omega)\capHinfty(\Omega)}:=
\|f\| | |
Hinfty(\Omega) |
+l{D}(f)1/2 (f\inl{D}(\Omega)\capHinfty(\Omega)).
We usually have
\Omega=D
C
l{D}(D):=l{D}
f(z)=\sumnanzn (f\inl{D}),
then
D(f)=\sumn\gen
2, | |
|a | |
n| |
and
\|f
2 | |
\| | |
l{D}= |
\sumn(n+1)
2. | |
|a | |
n| |
Clearly,
l{D}
f
D
f'
D
The reproducing kernel of
l{D}
w\inC\setminus\{0\}
kw(z)=
1 | |
z\overline{w |