Dirichlet function explained

1\Q

of the set of rational numbers

\Q

, i.e.

1\Q(x)=1

if is a rational number and

1\Q(x)=0

if is not a rational number (i.e. is an irrational number).\mathbf 1_\Q(x) = \begin1 & x \in \Q \\0 & x \notin \Q\end

It is named after the mathematician Peter Gustav Lejeune Dirichlet.[2] It is an example of a pathological function which provides counterexamples to many situations.

Periodicity

For any real number and any positive rational number,

1\Q(x+T)=1\Q(x)

. The Dirichlet function is therefore an example of a real periodic function which is not constant but whose set of periods, the set of rational numbers, is a dense subset of

\R

.

See also

Notes and References

  1. http://mathworld.wolfram.com/DirichletFunction.html Dirichlet Function — from MathWorld
  2. Peter Gustav . Lejeune Dirichlet . Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données. Journal für die reine und angewandte Mathematik . 4 . 1829 . 157–169.