Dirichlet function explained
of the set of
rational numbers
, i.e.
if is a rational number and
if is not a rational number (i.e. is an
irrational number).
It is named after the mathematician Peter Gustav Lejeune Dirichlet.[2] It is an example of a pathological function which provides counterexamples to many situations.
Periodicity
For any real number and any positive rational number,
. The Dirichlet function is therefore an example of a real
periodic function which is not
constant but whose set of periods, the set of rational numbers, is a
dense subset of
.
See also
Notes and References
- http://mathworld.wolfram.com/DirichletFunction.html Dirichlet Function — from MathWorld
- Peter Gustav . Lejeune Dirichlet . Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données. Journal für die reine und angewandte Mathematik . 4 . 1829 . 157–169.