Digital image processing explained

Digital image processing is the use of a digital computer to process digital images through an algorithm.[1] [2] As a subcategory or field of digital signal processing, digital image processing has many advantages over analog image processing. It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems. The generation and development of digital image processing are mainly affected by three factors: first, the development of computers;[3] second, the development of mathematics (especially the creation and improvement of discrete mathematics theory);[4] third, the demand for a wide range of applications in environment, agriculture, military, industry and medical science has increased.[5]

History

Many of the techniques of digital image processing, or digital picture processing as it often was called, were developed in the 1960s, at Bell Laboratories, the Jet Propulsion Laboratory, Massachusetts Institute of Technology, University of Maryland, and a few other research facilities, with application to satellite imagery, wire-photo standards conversion, medical imaging, videophone, character recognition, and photograph enhancement.[6] The purpose of early image processing was to improve the quality of the image. It was aimed for human beings to improve the visual effect of people. In image processing, the input is a low-quality image, and the output is an image with improved quality. Common image processing include image enhancement, restoration, encoding, and compression. The first successful application was the American Jet Propulsion Laboratory (JPL). They used image processing techniques such as geometric correction, gradation transformation, noise removal, etc. on the thousands of lunar photos sent back by the Space Detector Ranger 7 in 1964, taking into account the position of the Sun and the environment of the Moon. The impact of the successful mapping of the Moon's surface map by the computer has been a success. Later, more complex image processing was performed on the nearly 100,000 photos sent back by the spacecraft, so that the topographic map, color map and panoramic mosaic of the Moon were obtained, which achieved extraordinary results and laid a solid foundation for human landing on the Moon.[7]

The cost of processing was fairly high, however, with the computing equipment of that era. That changed in the 1970s, when digital image processing proliferated as cheaper computers and dedicated hardware became available. This led to images being processed in real-time, for some dedicated problems such as television standards conversion. As general-purpose computers became faster, they started to take over the role of dedicated hardware for all but the most specialized and computer-intensive operations. With the fast computers and signal processors available in the 2000s, digital image processing has become the most common form of image processing, and is generally used because it is not only the most versatile method, but also the cheapest.

Image sensors

See main article: Image sensor.

The basis for modern image sensors is metal–oxide–semiconductor (MOS) technology,[8] which originates from the invention of the MOSFET (MOS field-effect transistor) by Mohamed M. Atalla and Dawon Kahng at Bell Labs in 1959.[9] This led to the development of digital semiconductor image sensors, including the charge-coupled device (CCD) and later the CMOS sensor.[8]

The charge-coupled device was invented by Willard S. Boyle and George E. Smith at Bell Labs in 1969.[10] While researching MOS technology, they realized that an electric charge was the analogy of the magnetic bubble and that it could be stored on a tiny MOS capacitor. As it was fairly straightforward to fabricate a series of MOS capacitors in a row, they connected a suitable voltage to them so that the charge could be stepped along from one to the next.[8] The CCD is a semiconductor circuit that was later used in the first digital video cameras for television broadcasting.[11]

The NMOS active-pixel sensor (APS) was invented by Olympus in Japan during the mid-1980s. This was enabled by advances in MOS semiconductor device fabrication, with MOSFET scaling reaching smaller micron and then sub-micron levels.[12] [13] The NMOS APS was fabricated by Tsutomu Nakamura's team at Olympus in 1985.[14] The CMOS active-pixel sensor (CMOS sensor) was later developed by Eric Fossum's team at the NASA Jet Propulsion Laboratory in 1993.[15] By 2007, sales of CMOS sensors had surpassed CCD sensors.[16]

MOS image sensors are widely used in optical mouse technology. The first optical mouse, invented by Richard F. Lyon at Xerox in 1980, used a 5μm NMOS integrated circuit sensor chip.[17] [18] Since the first commercial optical mouse, the IntelliMouse introduced in 1999, most optical mouse devices use CMOS sensors.[19] [20]

Image compression

See main article: Image compression.

An important development in digital image compression technology was the discrete cosine transform (DCT), a lossy compression technique first proposed by Nasir Ahmed in 1972.[21] DCT compression became the basis for JPEG, which was introduced by the Joint Photographic Experts Group in 1992.[22] JPEG compresses images down to much smaller file sizes, and has become the most widely used image file format on the Internet.[23] Its highly efficient DCT compression algorithm was largely responsible for the wide proliferation of digital images and digital photos,[24] with several billion JPEG images produced every day .[25]

Medical imaging techniques produce very large amounts of data, especially from CT, MRI and PET modalities. As a result, storage and communications of electronic image data are prohibitive without the use of compression.[26] [27] JPEG 2000 image compression is used by the DICOM standard for storage and transmission of medical images. The cost and feasibility of accessing large image data sets over low or various bandwidths are further addressed by use of another DICOM standard, called JPIP, to enable efficient streaming of the JPEG 2000 compressed image data.[28]

Digital signal processor (DSP)

See main article: Digital signal processor.

Electronic signal processing was revolutionized by the wide adoption of MOS technology in the 1970s.[29] MOS integrated circuit technology was the basis for the first single-chip microprocessors and microcontrollers in the early 1970s,[30] and then the first single-chip digital signal processor (DSP) chips in the late 1970s.[31] [32] DSP chips have since been widely used in digital image processing.[31]

The discrete cosine transform (DCT) image compression algorithm has been widely implemented in DSP chips, with many companies developing DSP chips based on DCT technology. DCTs are widely used for encoding, decoding, video coding, audio coding, multiplexing, control signals, signaling, analog-to-digital conversion, formatting luminance and color differences, and color formats such as YUV444 and YUV411. DCTs are also used for encoding operations such as motion estimation, motion compensation, inter-frame prediction, quantization, perceptual weighting, entropy encoding, variable encoding, and motion vectors, and decoding operations such as the inverse operation between different color formats (YIQ, YUV and RGB) for display purposes. DCTs are also commonly used for high-definition television (HDTV) encoder/decoder chips.[33]

Medical imaging

See also: Medical imaging.

In 1972, the engineer from British company EMI Housfield invented the X-ray computed tomography device for head diagnosis, which is what is usually called CT (computer tomography). The CT nucleus method is based on the projection of the human head section and is processed by computer to reconstruct the cross-sectional image, which is called image reconstruction. In 1975, EMI successfully developed a CT device for the whole body, which obtained a clear tomographic image of various parts of the human body. In 1979, this diagnostic technique won the Nobel Prize. Digital image processing technology for medical applications was inducted into the Space Foundation Space Technology Hall of Fame in 1994.[34]

As of 2010, 5 billion medical imaging studies had been conducted worldwide.[35] [36] Radiation exposure from medical imaging in 2006 made up about 50% of total ionizing radiation exposure in the United States.[37] Medical imaging equipment is manufactured using technology from the semiconductor industry, including CMOS integrated circuit chips, power semiconductor devices, sensors such as image sensors (particularly CMOS sensors) and biosensors, and processors such as microcontrollers, microprocessors, digital signal processors, media processors and system-on-chip devices., annual shipments of medical imaging chips amount to 46million units and .[38] [39]

Tasks

Digital image processing allows the use of much more complex algorithms, and hence, can offer both more sophisticated performance at simple tasks, and the implementation of methods which would be impossible by analogue means.

In particular, digital image processing is a concrete application of, and a practical technology based on:

Some techniques which are used in digital image processing include:

Digital image transformations

Filtering

Digital filters are used to blur and sharpen digital images. Filtering can be performed by:

The following examples show both methods:[41]

Image padding in Fourier domain filtering

Images are typically padded before being transformed to the Fourier space, the highpass filtered images below illustrate the consequences of different padding techniques:

Notice that the highpass filter shows extra edges when zero padded compared to the repeated edge padding.

Filtering code examples

MATLAB example for spatial domain highpass filtering.

img=checkerboard(20); % generate checkerboard% ************************** SPATIAL DOMAIN ***************************klaplace=[0 -1 0; -1 5 -1; 0 -1 0]; % Laplacian filter kernelX=conv2(img,klaplace); % convolve test img with % 3x3 Laplacian kernelfigureimshow(X,[]) % show Laplacian filteredtitle('Laplacian Edge Detection')

Affine transformations

Affine transformations enable basic image transformations including scale, rotate, translate, mirror and shear as is shown in the following examples:[41]

Transformation NameAffine MatrixExample
Identity

\begin{bmatrix} 1&0&0\\ 0&1&0\\ 0&0&1 \end{bmatrix}

Reflection

\begin{bmatrix} -1&0&0\\ 0&1&0\\ 0&0&1 \end{bmatrix}

Scale

\begin{bmatrix} cx=2&0&0\\ 0&cy=1&0\\ 0&0&1 \end{bmatrix}

Rotate

\begin{bmatrix} \cos(\theta)&\sin(\theta)&0\\ -\sin(\theta)&\cos(\theta)&0\\ 0&0&1 \end{bmatrix}

where
Shear

\begin{bmatrix} 1&cx=0.5&0\\ cy=0&1&0\\ 0&0&1 \end{bmatrix}

To apply the affine matrix to an image, the image is converted to matrix in which each entry corresponds to the pixel intensity at that location. Then each pixel's location can be represented as a vector indicating the coordinates of that pixel in the image, [x, y], where x and y are the row and column of a pixel in the image matrix. This allows the coordinate to be multiplied by an affine-transformation matrix, which gives the position that the pixel value will be copied to in the output image.

However, to allow transformations that require translation transformations, 3 dimensional homogeneous coordinates are needed. The third dimension is usually set to a non-zero constant, usually 1, so that the new coordinate is [x, y, 1]. This allows the coordinate vector to be multiplied by a 3 by 3 matrix, enabling translation shifts. So the third dimension, which is the constant 1, allows translation.

Because matrix multiplication is associative, multiple affine transformations can be combined into a single affine transformation by multiplying the matrix of each individual transformation in the order that the transformations are done. This results in a single matrix that, when applied to a point vector, gives the same result as all the individual transformations performed on the vector [x, y, 1] in sequence. Thus a sequence of affine transformation matrices can be reduced to a single affine transformation matrix.

For example, 2 dimensional coordinates only allow rotation about the origin (0, 0). But 3 dimensional homogeneous coordinates can be used to first translate any point to (0, 0), then perform the rotation, and lastly translate the origin (0, 0) back to the original point (the opposite of the first translation). These 3 affine transformations can be combined into a single matrix, thus allowing rotation around any point in the image.[42]

Image denoising with Morphology

Mathematical morphology is suitable for denoising images. Structuring element are important in Mathematical morphology.

The following examples are about Structuring elements. The denoise function, image as I, and structuring element as B are shown as below and table.

e.g.

(I')=\begin{bmatrix} 45&50&65\\ 40&60&55\\ 25&15&5 \end{bmatrix} B=\begin{bmatrix} 1&2&1\\ 2&1&1\\ 1&0&3 \end{bmatrix}

Define Dilation(I, B)(i,j) =

max\{I(i+m,j+n)+B(m,n)\}

. Let Dilation(I,B) = D(I,B)

D(I', B)(1,1) =

max(45+1,50+2,65+1,40+2,60+1,55+1,25+1,15+0,5+3)=66

Define Erosion(I, B)(i,j) =

min\{I(i+m,j+n)-B(m,n)\}

. Let Erosion(I,B) = E(I,B)

E(I', B)(1,1) =

min(45-1,50-2,65-1,40-2,60-1,55-1,25-1,15-0,5-3)=2

After dilation

(I')=\begin{bmatrix} 45&50&65\\ 40&66&55\\ 25&15&5 \end{bmatrix}

After erosion

(I')=\begin{bmatrix} 45&50&65\\ 40&2&55\\ 25&15&5 \end{bmatrix}

An opening method is just simply erosion first, and then dilation while the closing method is vice versa. In reality, the D(I,B) and E(I,B) can implemented by Convolution

Structuring elementMaskCodeExample
Original ImageNoneUse Matlab to read Original imageoriginal = imread('scene.jpg');image = rgb2gray(original);[r, c, channel] = size(image);se = logical([1 1 1 ; 1 1 1 ; 1 1 1]);[p, q] = size(se);halfH = floor(p/2);halfW = floor(q/2);time = 3; % denoising 3 times with all method
Dilation

\begin{bmatrix} 1&1&1\\ 1&1&1\\ 1&1&1 \end{bmatrix}

Use Matlab to dilationimwrite(image, "scene_dil.jpg")extractmax = zeros(size(image), class(image));for i = 1 : time dil_image = imread('scene_dil.jpg'); for col = (halfW + 1): (c - halfW) for row = (halfH + 1) : (r - halfH) dpointD = row - halfH; dpointU = row + halfH; dpointL = col - halfW; dpointR = col + halfW; dneighbor = dil_image(dpointD:dpointU, dpointL:dpointR); filter = dneighbor(se); extractmax(row, col) = max(filter); end end imwrite(extractmax, "scene_dil.jpg");end
Erosion

\begin{bmatrix} 1&1&1\\ 1&1&1\\ 1&1&1 \end{bmatrix}

Use Matlab to erosionimwrite(image, 'scene_ero.jpg');extractmin = zeros(size(image), class(image));for i = 1: time ero_image = imread('scene_ero.jpg'); for col = (halfW + 1): (c - halfW) for row = (halfH +1): (r -halfH) pointDown = row-halfH; pointUp = row+halfH; pointLeft = col-halfW; pointRight = col+halfW; neighbor = ero_image(pointDown:pointUp,pointLeft:pointRight); filter = neighbor(se); extractmin(row, col) = min(filter); end end imwrite(extractmin, "scene_ero.jpg");end
Opening

\begin{bmatrix} 1&1&1\\ 1&1&1\\ 1&1&1 \end{bmatrix}

Use Matlab to Openingimwrite(extractmin, "scene_opening.jpg")extractopen = zeros(size(image), class(image));for i = 1 : time dil_image = imread('scene_opening.jpg'); for col = (halfW + 1): (c - halfW) for row = (halfH + 1) : (r - halfH) dpointD = row - halfH; dpointU = row + halfH; dpointL = col - halfW; dpointR = col + halfW; dneighbor = dil_image(dpointD:dpointU, dpointL:dpointR); filter = dneighbor(se); extractopen(row, col) = max(filter); end end imwrite(extractopen, "scene_opening.jpg");end
Closing

\begin{bmatrix} 1&1&1\\ 1&1&1\\ 1&1&1 \end{bmatrix}

Use Matlab to Closingimwrite(extractmax, "scene_closing.jpg")extractclose = zeros(size(image), class(image));for i = 1 : time ero_image = imread('scene_closing.jpg'); for col = (halfW + 1): (c - halfW) for row = (halfH + 1) : (r - halfH) dpointD = row - halfH; dpointU = row + halfH; dpointL = col - halfW; dpointR = col + halfW; dneighbor = ero_image(dpointD:dpointU, dpointL:dpointR); filter = dneighbor(se); extractclose(row, col) = min(filter); end end imwrite(extractclose, "scene_closing.jpg");end

Applications

Digital camera images

Digital cameras generally include specialized digital image processing hardware – either dedicated chips or added circuitry on other chips – to convert the raw data from their image sensor into a color-corrected image in a standard image file format. Additional post processing techniques increase edge sharpness or color saturation to create more naturally looking images.

Film

Westworld (1973) was the first feature film to use the digital image processing to pixellate photography to simulate an android's point of view.[43] Image processing is also vastly used to produce the chroma key effect that replaces the background of actors with natural or artistic scenery.

Face detection

Face detection can be implemented with Mathematical morphology, Discrete cosine transform which is usually called DCT, and horizontal Projection (mathematics).

General method with feature-based method

The feature-based method of face detection is using skin tone, edge detection, face shape, and feature of a face (like eyes, mouth, etc.) to achieve face detection. The skin tone, face shape, and all the unique elements that only the human face have can be described as features.

Process explanation

  1. Given a batch of face images, first, extract the skin tone range by sampling face images. The skin tone range is just a skin filter.
    1. Structural similarity index measure (SSIM) can be applied to compare images in terms of extracting the skin tone.
    2. Normally, HSV or RGB color spaces are suitable for the skin filter. E.g. HSV mode, the skin tone range is [0,48,50] ~ [20,255,255]
  2. After filtering images with skin tone, to get the face edge, morphology and DCT are used to remove noise and fill up missing skin areas.
    1. Opening method or closing method can be used to achieve filling up missing skin.
    2. DCT is to avoid the object with tone-like skin. Since human faces always have higher texture.
    3. Sobel operator or other operators can be applied to detect face edge.
  3. To position human features like eyes, using the projection and find the peak of the histogram of projection help to get the detail feature like mouth, hair, and lip.
    1. Projection is just projecting the image to see the high frequency which is usually the feature position.

Improvement of image quality method

Image quality can be influenced by camera vibration, over-exposure, gray level distribution too centralized, and noise, etc. For example, noise problem can be solved by Smoothing method while gray level distribution problem can be improved by histogram equalization.

Smoothing method

In drawing, if there is some dissatisfied color, taking some color around dissatisfied color and averaging them. This is an easy way to think of Smoothing method.

Smoothing method can be implemented with mask and Convolution. Take the small image and mask for instance as below.

image is

\begin{bmatrix} 2&5&6&5\\ 3&1&4&6\\ 1&28&30&2\\ 7&3&2&2 \end{bmatrix}

mask is

\begin{bmatrix} 1/9&1/9&1/9\\ 1/9&1/9&1/9\\ 1/9&1/9&1/9 \end{bmatrix}

After Convolution and smoothing, image is

\begin{bmatrix} 2&5&6&5\\ 3&9&10&6\\ 1&9&9&2\\ 7&3&2&2 \end{bmatrix}

Oberseving image[1, 1], image[1, 2], image[2, 1], and image[2, 2].

The original image pixel is 1, 4, 28, 30. After smoothing mask, the pixel becomes 9, 10, 9, 9 respectively.

new image[1, 1] =

\tfrac{1}{9}

* (image[0,0]+image[0,1]+image[0,2]+image[1,0]+image[1,1]+image[1,2]+image[2,0]+image[2,1]+image[2,2])

new image[1, 1] = floor(

\tfrac{1}{9}

* (2+5+6+3+1+4+1+28+30)) = 9

new image[1, 2] = floor(

Notes and References

  1. 10.1109/MSP.2018.2832195. What is a Signal? [Lecture Notes]. IEEE Signal Processing Magazine. 35. 5. 175–177. 2018. Chakravorty. Pragnan. 2018ISPM...35e.175C . 52164353.
  2. Book: Gonzalez, Rafael . Digital image processing . Pearson . New York, NY . 2018 . 978-0-13-335672-4 . 966609831 .
  3. Nagornov . Nikolay N. . Lyakhov . Pavel A. . Bergerman . Maxim V. . Kalita . Diana I. . 2024 . Modern Trends in Improving the Technical Characteristics of Devices and Systems for Digital Image Processing . IEEE Access . 12 . 44659–44681 . 10.1109/ACCESS.2024.3381493 . 2169-3536. free . 2024IEEEA..1244659N .
  4. Yamni . Mohamed . Daoui . Achraf . Abd El-Latif . Ahmed A. . February 2024 . Efficient color image steganography based on new adapted chaotic dynamical system with discrete orthogonal moment transforms . Mathematics and Computers in Simulation . en . 10.1016/j.matcom.2024.01.023.
  5. Hung . Che-Lun . 2020-05-28 . Computational Algorithms on Medical Image Processing . Current Medical Imaging . en . 16 . 5 . 467–468 . 10.2174/157340561605200410144743. 32484080 .
  6. Azriel Rosenfeld, Picture Processing by Computer, New York: Academic Press, 1969
  7. Book: Gonzalez, Rafael C.. Digital image processing. 2008. Prentice Hall. Woods, Richard E. (Richard Eugene), 1954–. 978-0-13-168728-8. 3rd. Upper Saddle River, N.J.. 23–28. 137312858.
  8. Book: Williams . J. B. . The Electronics Revolution: Inventing the Future . 2017 . Springer . 978-3-319-49088-5 . 245–8 .
  9. 1960: Metal Oxide Semiconductor (MOS) Transistor Demonstrated. The Silicon Engine. Computer History Museum. 31 August 2019. https://web.archive.org/web/20191003003452/https://www.computerhistory.org/siliconengine/metal-oxide-semiconductor-mos-transistor-demonstrated/. 3 October 2019. live.
  10. Book: Scientific charge-coupled devices . James R. Janesick . SPIE Press . 2001 . 978-0-8194-3698-6 . 3–4 .
  11. Boyle. William S. Smith. George E.. 1970. Charge Coupled Semiconductor Devices. Bell Syst. Tech. J.. 49. 4. 587–593. 10.1002/j.1538-7305.1970.tb01790.x. 1970BSTJ...49..587B .
  12. Book: Fossum . Eric R. . Eric Fossum . Charge-Coupled Devices and Solid State Optical Sensors III . Proceedings of the SPIE . 1900 . 12 July 1993 . 10.1117/12.148585 . 2–14 . Blouke . Morley M.. 10.1.1.408.6558 . 1993SPIE.1900....2F . Active pixel sensors: Are CCDS dinosaurs? . 10556755 .
  13. Web site: Fossum . Eric R. . 18831792 . Eric Fossum . Active Pixel Sensors . Eric Fossum . 2007 . https://web.archive.org/web/20190829162855/http://ericfossum.com/Publications/Papers/Active%20Pixel%20Sensors%20LASER%20FOCUS.pdf . 2019-08-29 . live.
  14. Matsumoto . Kazuya . Nakamura . Tsutomu . Yusa . Atsushi . Nagai . Shohei . 1. 1985 . A new MOS phototransistor operating in a non-destructive readout mode . Japanese Journal of Applied Physics . 24 . 5A . L323. 10.1143/JJAP.24.L323 . 1985JaJAP..24L.323M . 108450116 .
  15. Fossum . Eric R. . Eric Fossum . Hondongwa . D. B. . A Review of the Pinned Photodiode for CCD and CMOS Image Sensors . IEEE Journal of the Electron Devices Society . 2014 . 2 . 3 . 33–43 . 10.1109/JEDS.2014.2306412 . free .
  16. News: CMOS Image Sensor Sales Stay on Record-Breaking Pace . 6 October 2019 . IC Insights . 8 May 2018 . https://web.archive.org/web/20190621180401/http://www.icinsights.com/news/bulletins/CMOS-Image-Sensor-Sales-Stay-On-RecordBreaking-Pace/ . 21 June 2019 . live .
  17. Book: Lyon . Richard F. . Advances in Embedded Computer Vision . 2014 . Springer . 9783319093871 . 3–22 (3) . The Optical Mouse: Early Biomimetic Embedded Vision . Richard F. Lyon . https://books.google.com/books?id=p_GbBQAAQBAJ&pg=PA3.
  18. Book: Lyon . Richard F. . VLSI Systems and Computations . August 1981 . Computer Science Press . 978-3-642-68404-3 . H. T. Kung . 1–19 . The Optical Mouse, and an Architectural Methodology for Smart Digital Sensors . 10.1007/978-3-642-68402-9_1 . Richard F. Lyon . Robert F. Sproull . Guy L. Steele . http://bitsavers.trailing-edge.com/pdf/xerox/parc/techReports/VLSI-81-1_The_Optical_Mouse.pdf . https://web.archive.org/web/20140226021235/http://bitsavers.trailing-edge.com/pdf/xerox/parc/techReports/VLSI-81-1_The_Optical_Mouse.pdf . 2014-02-26 . live . 60722329.
  19. Web site: Brain . Marshall . Carmack . Carmen . 24 April 2000 . How Computer Mice Work . 9 October 2019 . . en.
  20. Web site: Benchoff . Brian . 17 April 2016 . Building the First Digital Camera . 30 April 2016 . . the Cyclops was the first digital camera.
  21. Ahmed . Nasir . N. Ahmed . How I Came Up With the Discrete Cosine Transform . . January 1991 . 1 . 1 . 4–5 . 10.1016/1051-2004(91)90086-Z . 1991DSP.....1....4A . 10 October 2019 . https://web.archive.org/web/20160610013109/https://www.scribd.com/doc/52879771/DCT-History-How-I-Came-Up-with-the-Discrete-Cosine-Transform . 10 June 2016 . live .
  22. Web site: T.81 – Digital compression and coding of continuous-tone still images – requirements and guidelines . . September 1992 . 12 July 2019 . https://web.archive.org/web/20190717052727/http://www.w3.org/Graphics/JPEG/itu-t81.pdf . 17 July 2019 . live .
  23. Web site: The JPEG image format explained . . Joe . Svetlik . 5 August 2019 . 31 May 2018 . https://web.archive.org/web/20190805194553/https://home.bt.com/tech-gadgets/photography/what-is-a-jpeg-11364206889349 . 5 August 2019 . dead .
  24. Web site: 24 September 2013 . What Is a JPEG? The Invisible Object You See Every Day . Paul . Caplan . subscription . live . https://web.archive.org/web/20191009054159/https://www.theatlantic.com/technology/archive/2013/09/what-is-a-jpeg-the-invisible-object-you-see-every-day/279954/ . 9 October 2019 . 13 September 2019 . The Atlantic.
  25. News: Baraniuk . Chris . JPeg lockdown: Restriction options sought by committee . 13 September 2019 . BBC News. 15 October 2015 . https://web.archive.org/web/20191009193610/https://www.bbc.co.uk/news/technology-34538705 . 9 October 2019 . live .
  26. Nagornov . Nikolay N. . Lyakhov . Pavel A. . Valueva . Maria V. . Bergerman . Maxim V. . 2022 . RNS-Based FPGA Accelerators for High-Quality 3D Medical Image Wavelet Processing Using Scaled Filter Coefficients . free . IEEE Access . 10 . 19215–19231 . 10.1109/ACCESS.2022.3151361 . 2169-3536 . 246895876 . Medical imaging systems produce increasingly accurate images with improved quality using higher spatial resolutions and color bit-depth. Such improvements increase the amount of information that needs to be stored, processed, and transmitted. . free. 2022IEEEA..1019215N .
  27. Dhouib . D. . Naït-Ali . A. . Olivier . C. . Naceur . M.S. . June 2021 . ROI-Based Compression Strategy of 3D MRI Brain Datasets for Wireless Communications . IRBM . en . 42 . 3 . 146–153 . 10.1016/j.irbm.2020.05.001 . 219437400 . Because of the large amount of medical imaging data, the transmission process becomes complicated in telemedicine applications. Thus, in order to adapt the data bit streams to the constraints related to the limitation of the bandwidths a reduction of the size of the data by compression of the images is essential..
  28. Xin . Gangtao . Fan . Pingyi . 2021-06-11 . A lossless compression method for multi-component medical images based on big data mining . Scientific Reports . en . 11 . 1 . 12372 . 10.1038/s41598-021-91920-x . 2045-2322. free . 34117350 . 8196061 .
  29. Book: Grant . Duncan Andrew . Gowar . John . Power MOSFETS: theory and applications . 1989 . . 978-0-471-82867-9 . 1 . The metal–oxide–semiconductor field-effect transistor (MOSFET) is the most commonly used active device in the very large-scale integration of digital integrated circuits (VLSI). During the 1970s these components revolutionized electronic signal processing, control systems and computers..
  30. Shirriff . Ken . The Surprising Story of the First Microprocessors . . 30 August 2016 . 53 . 9 . 48–54 . . 10.1109/MSPEC.2016.7551353 . 32003640 . 13 October 2019 . https://web.archive.org/web/20191013012248/https://spectrum.ieee.org/tech-history/silicon-revolution/the-surprising-story-of-the-first-microprocessors . 13 October 2019 . live .
  31. Web site: 1979: Single Chip Digital Signal Processor Introduced . The Silicon Engine . . 14 October 2019 . https://web.archive.org/web/20191003072500/https://www.computerhistory.org/siliconengine/single-chip-digital-signal-processor-introduced/ . 3 October 2019 . live .
  32. Web site: Taranovich . Steve . 30 years of DSP: From a child's toy to 4G and beyond . . 14 October 2019 . 27 August 2012 . https://web.archive.org/web/20191014044347/https://www.edn.com/design/systems-design/4394792/30-years-of-DSP--From-a-child-s-toy-to-4G-and-beyond . 14 October 2019 . live .
  33. Stanković . Radomir S. . Astola . Jaakko T. . Reminiscences of the Early Work in DCT: Interview with K.R. Rao . Reprints from the Early Days of Information Sciences . 2012 . 60 . 13 October 2019 . https://web.archive.org/web/20191013204147/http://ticsp.cs.tut.fi/reports/ticsp-report-60-reprint-rao-corrected.pdf . 13 October 2019 . live .
  34. Web site: Space Technology Hall of Fame:Inducted Technologies/1994 . 1994 . Space Foundation . 7 January 2010 . https://web.archive.org/web/20110704043830/http://www.spacetechhalloffame.org/inductees_1994_Digital_Image_Processing.html . 4 July 2011 .
  35. Roobottom CA, Mitchell G, Morgan-Hughes G . November 2010 . Radiation-reduction strategies in cardiac computed tomographic angiography . Clinical Radiology . 65 . 11 . 859–67 . 10.1016/j.crad.2010.04.021 . 20933639 . free.
  36. Scialpi M, Reginelli A, D'Andrea A, Gravante S, Falcone G, Baccari P, Manganaro L, Palumbo B, Cappabianca S . April 2016 . Pancreatic tumors imaging: An update . https://web.archive.org/web/20190824162219/https://iris.uniroma1.it/bitstream/11573/908479/1/Scialpi_Pancreatic-tumors_2016.pdf . 2019-08-24 . live . International Journal of Surgery . 28 . Suppl 1 . S142-55 . 10.1016/j.ijsu.2015.12.053 . 26777740 . free . 11573/908479.
  37. Rahbar H, Partridge SC . February 2016 . Multiparametric MR Imaging of Breast Cancer . Magnetic Resonance Imaging Clinics of North America . 24 . 1 . 223–238 . 10.1016/j.mric.2015.08.012 . 4672390 . 26613883.
  38. News: 8 September 2016 . Medical Imaging Chip Global Unit Volume To Soar Over the Next Five Years . Silicon Semiconductor . 25 October 2019.
  39. Banerjee R, Pavlides M, Tunnicliffe EM, Piechnik SK, Sarania N, Philips R, Collier JD, Booth JC, Schneider JE, Wang LM, Delaney DW, Fleming KA, Robson MD, Barnes E, Neubauer S . January 2014 . Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease . Journal of Hepatology . 60 . 1 . 69–77 . 10.1016/j.jhep.2013.09.002 . 3865797 . 24036007.
  40. Zhang. M. Z.. Livingston. A. R.. Asari. V. K.. 2008. International Journal of Computers and Applications. 30. 4. 298–308. 10.1080/1206212x.2008.11441909. A High Performance Architecture for Implementation of 2-D Convolution with Quadrant Symmetric Kernels. 57289814.
  41. Book: Gonzalez , Rafael . Digital Image Processing, 3rd . Pearson Hall . 2008 . 978-0-13-168728-8.
  42. Book: House, Keyser. Affine Transformations. 6 December 2016. Clemson. Foundations of Physically Based Modeling & Animation. A K Peters/CRC Press. 978-1-4822-3460-2. 26 March 2019. https://web.archive.org/web/20170830052734/https://people.cs.clemson.edu/~dhouse/courses/401/notes/affines-matrices.pdf. 30 August 2017. live.
  43. http://www.beanblossom.in.us/larryy/cgi.html A Brief, Early History of Computer Graphics in Film