Diffusion-limited escape occurs when the rate of atmospheric escape to space is limited by the upward diffusion of escaping gases through the upper atmosphere, and not by escape mechanisms at the top of the atmosphere (the exobase). The escape of any atmospheric gas can be diffusion-limited, but only diffusion-limited escape of hydrogen has been observed in our solar system, on Earth, Mars, Venus and Titan.[1] Diffusion-limited hydrogen escape was likely important for the rise of oxygen in Earth's atmosphere (the Great Oxidation Event) and can be used to estimate the oxygen and hydrogen content of Earth's prebiotic atmosphere.[2] [3] [4]
Diffusion-limited escape theory was first used by Donald Hunten in 1973 to describe hydrogen escape on one of Saturn's moons, Titan.[5] [6] The following year, in 1974, Hunten found that the diffusion-limited escape theory agreed with observations of hydrogen escape on Earth.[7] Diffusion-limited escape theory is now used widely to model the composition of exoplanet atmospheres and Earth's ancient atmosphere.[8] [9]
Hydrogen escape on Earth occurs at ~500 km altitude at the exobase (the lower border of the exosphere) where gases are collisionless. Hydrogen atoms at the exobase exceeding the escape velocity escape to space without colliding into another gas particle.
For a hydrogen atom to escape from the exobase, it must first travel upward through the atmosphere from the troposphere. Near ground level, hydrogen in the form of H2O, H2, and CH4 travels upward in the homosphere through turbulent mixing, which dominates up to the homopause. At about 17 km altitude, the cold tropopause (known as the "cold trap") freezes out most of the H2O vapor that travels through it, preventing the upward mixing of some hydrogen. In the upper homosphere, hydrogen bearing molecules are split by ultraviolet photons leaving only H and H2 behind. The H and H2 diffuse upward through the heterosphere to the exobase where they escape the atmosphere by Jeans thermal escape and/or a number of suprathermal mechanisms. On Earth, the rate-limiting step or "bottleneck" for hydrogen escape is diffusion through the heterosphere. Therefore, hydrogen escape on Earth is diffusion-limited.
By considering one dimensional molecular diffusion of H2 through a heavier background atmosphere, you can derive a formula for the upward diffusion-limited flux of hydrogen (
\Phil
\Phil=CfT(H)
C
fT(H)
fT(H)
fT(H)=fH+2f
|
|
|
For Earth's atmosphere,
C=2.5 x 1013
\Phil=4.3 x 108
Note that hydrogen is the only gas in Earth's atmosphere that escapes at the diffusion-limit. Helium escape is not diffusion-limited and instead escapes by a suprathermal process known as the polar wind.
Transport of gas molecules in the atmosphere occurs by two mechanisms: molecular and eddy diffusion. Molecular diffusion is the transport of molecules from an area of higher concentration to lower concentration due to thermal motion. Eddy diffusion is the transport of molecules by the turbulent mixing of a gas. The sum of molecular and eddy diffusion fluxes give the total flux of a gas
i
\Phii=
eddy | |
\Phi | |
i |
The vertical eddy diffusion flux is given by
| ||||
\Phi | ||||
i |
K
n
fi
i
The molecular diffusion flux, on the other hand, can be derived from theory. The general formula for the diffusion of gas 1 relative to gas 2 is given by [12]
\vec{v}1-\vec{v}2=-D12\left(
n2 | \nabla\left( | |
n1n2 |
n1 | \right)+ | |
n |
m2-m1 | |
m |
\nabla(ln{P})+\alphaT\nabla(ln{T})-
m1m2 | |
mkT |
(\vec{a}1-\vec{a}2)\right)
Variable | Definition | |
---|---|---|
\vec{v}1 \vec{v}2 | velocity of gas 1, 2 (cm s−1) | |
w1 w2 | vertical velocity of gas 1, 2 (cm s−1) | |
D12 | binary diffusion coefficient (cm2 s−1 molecules−1) | |
b12 | binary diffusion parameter ( 2.6 x 1019 | |
n1 n2 | number densities of gas 1 and2 (molecules cm−3) | |
n | n1+n2 | |
f1 | mixing ratio of gas 1 | |
m1 m2 | molecular mass of gas 1 and 2 (in kg molecule−1) | |
m | (n1m1+n1m2)/(n1+n2) | |
k | Boltzmann constant ( 1.38 x 10-23 | |
T | Temperature (K) | |
\vec{a}1 \vec{a}2 | acceleration of gas 1 and 2 from gravity, electric fields, etc. (cm s−2) | |
g | gravitational acceleration(9.81 m s−2 on Earth) | |
\alphaT | thermal diffusivity (~-0.25 for H or H2 in air) | |
P | air pressure (Pa) |
Each variable is defined in table on right. The terms on the right hand side of the formula account for diffusion due to molecular concentration, pressure, temperature, and force gradients respectively. The expression above ultimately comes from the Boltzmann transport equation.[13] We can simplify the above equation considerably with several assumptions. We will consider only vertical diffusion, and a neutral gas such that the accelerations are both equal to gravity (
\vec{a}1=\vec{a}2=g
w1-w2=-D12\left(
n2 | |
n1n2 |
d | \left( | |
dz |
n1 | \right)+ | |
n |
m2-m1 | |
m |
d | |
dz |
(ln{P})+\alphaT
d | |
dz |
(ln{T})\right)
We are interested in the diffusion of a lighter molecule (e.g. hydrogen) through a stationary heavier background gas (air). Therefore, we can take velocity of the heavy background gas to be zero:
w2=0
d | |
dz |
ln{P}=
1 | |
P |
dP | = | |
dz |
-mg | |
kT |
The chain rule can also be used to simplify the derivative in the third term.
d | ln{T}= | |
dz |
1 | |
T |
dT | |
dz |
Making these substitutions gives
w1=-D12\left(
n2 | |
n1n2 |
df1 | + | |
dz |
(m2-m1)g | + | |
kT |
\alphaT | |
T |
dT | |
dz |
\right)
n1/n=f1
mol=w | |
\Phi | |
1n |
1=-D12
n | ||||
|
df1 | + | |
dz |
(m2-m1)g | + | |
kT |
\alphaT | |
T |
dT | |
dz |
\right)
By adding the molecular diffusion flux and the eddy diffusion flux, we get the total flux of molecule 1 through the background gas
\Phi1=
| ||||
\Phi | ||||
1 |
-D12
n | ||||
|
df1 | + | |
dz |
(m2-m1)g | + | |
kT |
\alphaT | |
T |
dT | |
dz |
\right)
Temperature gradients are fairly small in the heterosphere, so
dT/dz ≈ 0
\Phi1=-Kn
df1 | |
dz |
-D12
n | ||||
|
df1 | + | |
dz |
(m2-m1)g | |
kT |
\right)
The maximum flux of gas 1 occurs when
df1/dz=0
f1
f1
n1
f1=n1/n
n1
w1
\Phi1=w1n1
w1
df1/dz=0
\Phil
df1/dz=0
\Phil=D12
n | ||||
|
\right)
Since
D12=b12/n
\Phil=
b12g(m2-m1) | |
kT |
n1 | = | |
n |
b12g(m2-m1) | |
kT |
f1
\Phil=Cf1
This is the diffusion-limited flux of a molecule. For any particular atmosphere,
C
mair-mhydrogen ≈ 4.8 x 10-26
g=9.81
T ≈ 208
b12
=b | |||||||||||||||
|
+b | ||||||||||||||||||||
|
For
nH ≈ 1.8 x 107
n | ||
|
5.2 x 107
bH ≈ 2.73 x 1019
bH2 ≈ 1.46 x 1019
b12=1.8 x 1019
C=2.9 x 1013
C=2.5 x 1013
Every rocky body in the solar system with a substantial atmosphere, including Earth, Mars, Venus, and Titan, loses hydrogen at the diffusion-limited rate.
For Mars, the constant governing diffusion-limited escape of hydrogen is
CMars=1.1 x 1013
fT(H)=(30\pm10) x 10-6
mars | |
\Phi | |
l |
=CMarsfT(H)=(3.3\pm1.1) x 108
Mariner 6 and 7 spacecraft indirectly observed hydrogen escape flux on Mars between
1 x 108
2 x 108
Observations of hydrogen escape on Venus and Titan are also at the diffusion-limit. On Venus, hydrogen escape was measured to be about
1.7 x 107
3 x 107
(2.0\pm2.1) x 1010
3 x 1010
We can use diffusion-limited hydrogen escape to estimate the amount of O2 on the Earth's atmosphere before the rise of life (the prebiotic atmosphere). The O2 content of the prebiotic atmosphere was controlled by its sources and sinks. If the potential sinks of O2 greatly outweighed the sources, then the atmosphere would have been nearly devoid of O2.
In the prebiotic atmosphere, O2 was produced by the photolysis of CO2 and H2O in the atmosphere:
These reactions aren't necessarily a net source of O2. If the CO and O produced from CO2 photolysis remain in the atmosphere, then they will eventually recombine to make CO2. Likewise, if the H and O2 from H2O photolysis remain in the atmosphere, then they will eventually react to form H2O. The photolysis of H2O is a net source of O2 only if the hydrogen escapes to space.
If we assume that hydrogen escape occurred at the diffusion-limit in the prebiotic atmosphere, then we can estimate the amount of H2 that escaped due to water photolysis. If the prebiotic atmosphere had a modern stratospheric H2O mixing ratio of 3 ppmv which is equivalent to 6 ppmv of H after photolysis, then
\Phil(H)=(2.5 x 1013) ⋅ (6 x 10-6)=1.5 x 108
Stoichiometry says that every mol of H escape produced 0.25 mol of O2 (i.e.
3.75 x 107
7.5 x 109
1.9 x 109
H2 concentrations in the prebiotic atmosphere were also controlled by its sources and sinks. In the prebiotic atmosphere, the main source of H2 was volcanic outgassing, and the main sink of outgassing H2 would have been escape to space. Some outgassed H2 would have reacted with atmospheric O2 to form water, but this was very likely a negligible sink of H2 because of scarce O2 (see the previous section). This is not the case in the modern atmosphere where the main sink of volcanic H2 is its reaction with plentiful atmospheric O2 to form H2O.
If we assume that the prebiotic H2 concentration was at a steady-state, then the volcanic H2 flux was approximately equal to the escape flux of H2.
\Phivolc(H2) ≈
\Phi | ||
|
Additionally, if we assume that H2 was escaping at the diffusion-limited rate as it is on the modern Earth then
\Phivolc(H2) ≈ \Phiesc(H2)=2.5 x 1013
f | ||
|
If the volcanic H2 flux was the modern value of
3.75 x 109
f | ||
|
≈
\Phivolc(H2) | = | |
2.5 x 1013 |
3.75 x 109 | |
2.5 x 1013 |
=1.5 x 10-4=150
By comparison, H2 concentration in the modern atmosphere is 0.55 ppmv, so prebiotic H2 was likely several hundred times higher than today's value.
This estimate should be considered as a lower bound on the actual prebiotic H2 concentration. There are several important factors that we neglected in this calculation. The Earth likely had higher rates of hydrogen outgassing because the interior of the Earth was much warmer ~ 4 billion years ago. Additionally, there is geologic evidence that the mantle was more reducing in the distant past, meaning that even more reduced gases (e.g. H2) would have been outgassed by volcanos relative to oxidized volcanic gases.[19] Other reduced volcanic gases, like CH4 and H2S should also contribute to this calculation.