Diego Krapf | |
Caption: | Diego Krapf, 2019 |
Birth Date: | 21 November 1973 |
Birth Place: | Rosario, Argentina |
Nationality: | Israeli-Argentine-American |
Alma Mater: | Hebrew University of Jerusalem |
Doctoral Advisor: | Amir Sa'ar |
Spouse: | Susan Sasson |
Field: | Biophysics |
Work Institution: | Colorado State University |
Diego Krapf (born November 21, 1973) is an Argentine-Israeli-American physicist known for his work on anomalous diffusion and ergodicity breaking. He currently is a professor in the Department of Electrical and Computer Engineering at Colorado State University.
Diego Krapf was born on November 21, 1973, to Martha Elbert and Luis Krapf. He spent his childhood growing up in Rosario, Argentina, and he attended the Instituto Politécnico Superior.
In 1992, after finishing high school, Krapf immigrated to Israel, where he spent half a year in Kibbutz Gan Shmuel and then moved to Jerusalem. He enrolled in physics at the Hebrew University of Jerusalem.
Krapf holds a BSc in physics (1997), a MSc in applied physics (2000) and a PhD in applied physics (2004) from the Hebrew University of Jerusalem. After finishing his PhD, he completed a postdoc at the Delft University of Technology (2007), doing research in nanoelectrode fabrication and single molecule experiments using nanopores under the supervision of Cees Dekker and Serge Lemay.[1]
Since 2007, Krapf is a faculty member in Colorado State University, where he currently heads a Biophysics lab that focuses on anomalous diffusion and cellular architecture using a combination of analytical and experimental tools including single particle tracking and super-resolution imaging.[2] [3]
In 2011, Krapf and his team at Colorado State University showed that the motion of membrane proteins on the surface of mammalian cells display anomalous diffusion with a non-ergodic underlying physical mechanism.[4] These results represented a breakthrough in the understanding of membrane dynamics because they provide a completely new way of interpreting the motion of membrane proteins.[5] [6] In 2017, the Krapf lab discovered that due to complex branching processes the actin cytoskeleton adjacent to the plasma membrane of mammalian cells form an intricate fractal structure. In 2018, an international team led by Krapf involving researchers from the University of Massachusetts and the Instituto de Biología y Medicina Experimental (Argentina) revealed the organization of the actin-based cytoskeleton in the sperm flagellum using three-dimensional super-resolution imaging.[7] It was discovered that in the midpiece of murine sperm, the actin cytoskeleton forms a double-helix that follows the mitochondrial sheath, a type of filamentous actin structure that had not been previously observed.[8]