The Routh array is a tabular method permitting one to establish the stability of a system using only the coefficients of the characteristic polynomial. Central to the field of control systems design, the Routh–Hurwitz theorem and Routh array emerge by using the Euclidean algorithm and Sturm's theorem in evaluating Cauchy indices.
Given the system:
\begin{align} f(x)&{}=
n-1 | |
a | |
1x |
+ … +an&{} (1)\\ &{}=(x-r1)(x-r2) … (x-rn)&{} (2)\\ \end{align}
f(x)=0
N
f(x)=0
P
f(x)=0
N+P=n (3)
f(x)
f(x)=\rho(x)ej\theta(x) (4)
\rho(x)=\sqrt{ak{Re}2[f(x)]+ak{Im}2[f(x)]} (5)
\theta(x)=\tan-1(ak{Im}[f(x)]/ak{Re}[f(x)]) (6)
\theta(x)=
\theta | |
r1 |
(x)+\theta | |
r2 |
(x)+ … +\theta | |
rn |
(x) (7)
\theta | |
ri |
(x)=\angle(x-ri) (8)
f(x)=0
\begin{align} \theta | |
ri |
(x)|x=-jinfty&=\angle(x-ri)|x=-jinfty\\ &=\angle(0-ak{Re}[ri],-infty-ak{Im}[ri])\\ &=\angle(-|ak{Re}[ri]|,-infty)\\ &=\pi+\lim\phi\tan-1\phi=
3\pi | |
2 |
(9)\\ \end{align}
\theta | |
ri |
(x)|x=j0=\angle(-|ak{Re}[ri]|,0)=\pi-\tan-10=\pi (10)
\theta | |
ri |
(x)|x=jinfty=\angle(-|ak{Re}[ri]|,infty)=\pi-\lim\phi\tan-1\phi=
\pi | |
2 |
(11)
f(x)=0
\begin{align} \theta | |
ri |
(x)|x=-jinfty&=\angle(x-ri)|x=-jinfty\\ &=\angle(0-ak{Re}[ri],-infty-ak{Im}[ri])\\ &=\angle(|ak{Re}[ri]|,-infty)\\ &=0-\lim\phi\tan1\phi=-
\pi | |
2 |
(12)\\ \end{align}
\theta | |
ri |
(x)|x=j0=\angle(|ak{Re}[ri]|,0)=\tan-10=0 (13)
\theta | |
ri |
(x)|x=jinfty=\angle(|ak{Re}[ri]|,infty)=\lim\phi\tan-1\phi=
\pi | |
2 |
(14)
\theta | |
ri |
x=jinfty | |
(x)| | |
x=-jinfty |
=-\pi
f(x)
\theta | |
ri |
x=jinfty | |
(x)| | |
x=-jinfty |
=\pi
f(x)
x=jinfty | |
\theta(x)| | |
x=-jinfty |
=\angle(x-r1)|
x=jinfty | |
x=-jinfty |
+\angle(x-r2)|
x=jinfty | |
x=-jinfty |
+ … +\angle(x-rn)|
x=jinfty | |
x=-jinfty |
=\piN-\piP (15)
\Delta= | 1 |
\pi |
jinfty | |
\theta(x)| | |
-jinfty |
(16)
N-P=\Delta (17)
N=
n+\Delta | |
2 |
P=
n-\Delta | |
2 |
(18)
f(x)
n
\Delta
N
P
\tan(\theta)
\theta
x
\thetaa=\theta(x)|x=ja
\thetab=\theta(x)|x=jb
\pi
\theta(x)
\pi
\theta
+infty
-infty
-infty
+infty
x
\theta(x)
\pi
\theta
\pi
x=ja
x=jb
\tan\theta(x)=ak{Im}[f(x)]/ak{Re}[f(x)]
-infty
+infty
+infty
-infty
x
Thus,
jinfty | |
\theta(x)| | |
-jinfty |
\pi
ak{Im}[f(x)]/ak{Re}[f(x)]
-infty
+infty
ak{Im}[f(x)]/ak{Re}[f(x)]
+infty
-infty
x
(-jinfty,+jinfty)
x=\pmjinfty
\tan[\theta(x)]
\thetaa=\pi/2\pmi\pi
N
P
\Delta
\pi/2
\pi/2
\theta
f(x)
\tan[\theta]=ak{Im}[f(x)]/ak{Re}[f(x)]
(+jinfty,-jinfty)
\tan[\theta'(x)]=\tan[\theta+\pi/2]=-\cot[\theta(x)]=-ak{Re}[f(x)]/ak{Im}[f(x)] (19)
\Delta
x
-jinfty
+jinfty
\theta(x)
\theta'(x)
\thetaa
\pi
To derive Routh's criterion, first we'll use a different notation to differentiate between the even and odd terms of
f(x)
f(x)=
n | |
a | |
0x |
+
n-1 | |
b | |
0x |
+
n-2 | |
a | |
1x |
+
n-3 | |
b | |
1x |
+ … (20)
\begin{align} f(j\omega)&=
n-1 | |
a | |
0(j\omega) |
n-2 | |
+a | |
1(j\omega) |
n-3 | |
+b | |
1(j\omega) |
+ … &{} (21)\\ &=
n-2 | |
a | |
1(j\omega) |
n-4 | |
+a | |
2(j\omega) |
+ … &{} (22)\\ &+
n-1 | |
b | |
0(j\omega) |
n-3 | |
+b | |
1(j\omega) |
n-5 | |
+b | |
2(j\omega) |
+ … \\ \end{align}
n
\begin{align} f(j\omega)&=(-1)n/2
n-2 | |
[a | |
1\omega |
n-4 | |
+a | |
2\omega |
- … ]&{} (23)\\ &+j(-1)(n/2)-1
n-1 | |
[b | |
0\omega |
n-3 | |
-b | |
1\omega |
n-5 | |
+b | |
2\omega |
- … ]&{}\\ \end{align}
n
\begin{align} f(j\omega)&=j(-1)(n-1)/2
n-2 | |
[a | |
1\omega |
n-4 | |
+a | |
2\omega |
- … ]&{} (24)\\ &+(-1)(n-1)/2
n-1 | |
[b | |
0\omega |
n-3 | |
-b | |
1\omega |
n-5 | |
+b | |
2\omega |
- … ]&{}\\ \end{align}
n
N+P
N+P
N-P
n
N-P
N-P
\theta
\pi
\tan(\theta)
n
\tan(\theta')=\tan(\theta+\pi)=-\cot(\theta)
n
Thus, from (6) and (23), for
n
\Delta=
+infty | |
I | |
-infty |
-ak{Im | |
[f(x)]}{ak{Re}[f(x)]}=I |
+infty | |
-infty |
| ||||||||||||||||
|
(25)
n
\Delta=
+infty | |
I | |
-infty |
ak{Re | |
[f(x)]}{ak{Im}[f(x)]}=I |
+infty | |
-infty |
| ||||||||||||||||
|
(26)
\Delta=
+infty | |
I | |
-infty |
| ||||||||||||||||
|
(27)
Sturm gives us a method for evaluating
\Delta=
+infty | |
I | |
-infty |
f2(x) | |
f1(x) |
Given a sequence of polynomials
f1(x),f2(x),...,fm(x)
1) If
fk(x)=0
fk-1(x) ≠ 0
fk+1(x) ≠ 0
\operatorname{sign}[fk-1(x)]=-\operatorname{sign}[fk+1(x)]
2)
fm(x) ≠ 0
-infty<x<infty
and we define
V(x)
f1(x),f2(x),...,fm(x)
x
\Delta=
+infty | |
I | |
-infty |
f2(x) | |
f1(x) |
=V(-infty)-V(+infty) (28)
Starting with
f1(x)
f2(x)
f1(x)/f2(x)
f3(x)
f2(x)/f3(x)
f4(x)
\begin{align} &f1(x)=q1(x)f2(x)-f3(x) (29)\\ &f2(x)=q2(x)f3(x)-f4(x)\\ &\ldots\\ &fm-1(x)=qm-1(x)fm(x)\\ \end{align}
fk-1(x)=qk-1(x)fk(x)-fk+1(x)
fm(x)
f1(x),f2(x),...,fm-1(x)
It is in applying Sturm's theorem (28) to (29), through the use of the Euclidean algorithm above that the Routh matrix is formed.
We get
f3(\omega)=
a0 | |
b0 |
f2(\omega)-f1(\omega) (30)
c0
-c1
c2
-c3
f3(\omega)=
n-2 | |
c | |
0\omega |
-
n-4 | |
c | |
1\omega |
+
n-6 | |
c | |
2\omega |
- … (31)
c0=a1-
a0 | |
b0 |
b1=
b0a1-a0b1 | |
b0 |
;c1=a2-
a0 | |
b0 |
b2=
b0a2-a0b2 | |
b0 |
;\ldots (32)
f4(\omega)=
b0 | |
c0 |
f3(\omega)-f2(\omega) (33)
f4(\omega)
d0
-d1
d2
-d3
f4(\omega)=
n-3 | |
d | |
0\omega |
-
n-5 | |
d | |
1\omega |
+
n-7 | |
d | |
2\omega |
- … (34)
d0=b1-
b0 | |
c0 |
c1=
c0b1-b0c1 | |
c0 |
;d1=b2-
b0 | |
c0 |
c2=
c0b2-b0c2 | |
c0 |
;\ldots (35)
f1(\omega)
f2(\omega)
fn+1(\omega)
n
f1(x),f2(x),...,fm(x)
Note now, that in determining the signs of the members of the sequence of polynomials
f1(x),f2(x),...,fm(x)
\omega=\pminfty
\omega
\omega
f1(x),f2(x),...
fm(x)
a0
b0
c0
d0
f1(x)
f2(x)
fm(x)
\omega=\pminfty
So we get
V(+infty)=V(a0,b0,c0,d0,...)
V(+infty)
n | |
a | |
0infty |
n-1 | |
b | |
0infty |
n-2 | |
c | |
0infty |
a0
b0
c0
d0
V(-infty)=V(a0,-b0,c0,-d0,...)
V(-infty)
n | |
a | |
0(-infty) |
n-1 | |
b | |
0(-infty) |
n-2 | |
c | |
0(-infty) |
a0
-b0
c0
-d0
Since our chain
a0
b0
c0
d0
n
V(+infty)+V(-infty)=n
V(a0,b0,c0,d0,...)
a0
b0
V(a0,-b0,c0,-d0,...)
a0
-b0
n
n
As
\Delta=V(-infty)-V(+infty)
n=V(+infty)+V(-infty)
P=(n-\Delta/2)
P=V(+infty)=V(a0,b0,c0,d0,...)
The number of roots of a real polynomial
f(z)
ak{Re}(ri)>0
And for the stable case where
P=0
V(a0,b0,c0,d0,...)=0
In order for all the roots of the polynomial
f(z)