In mathematics, a dependence relation is a binary relation which generalizes the relation of linear dependence.
Let
X
\triangleleft
a
X
S
X
a\triangleleftS
a\inS
a\triangleleftS
a\triangleleftS
S0
S
a\triangleleftS0
T
X
b\inS
b\triangleleftT
a\triangleleftS
a\triangleleftT
a\triangleleftS
a\ntriangleleftS-\lbraceb\rbrace
b\inS
b\triangleleft(S-\lbraceb\rbrace)\cup\lbracea\rbrace
Given a dependence relation
\triangleleft
X
S
X
a\ntriangleleftS-\lbracea\rbrace
a\inS.
S\subseteqT
S
T
t\triangleleftS
t\inT.
S
X
S
S
X.
If
X
\triangleleft
X
\triangleleft.
X
If
a\triangleleftS
S\subseteqT
a\triangleleftT
V
F.
\triangleleft
\upsilon\triangleleftS
\upsilon
S
K
F.
\triangleleft
\alpha\triangleleftS
\alpha
F(S).
\triangleleft