Delaporte distribution explained
Delaporte |
Type: | discrete |
Pdf Image: | When
and
are 0, the distribution is the Poisson. When
is 0, the distribution is the negative binomial. |
Cdf Image: | When
and
are 0, the distribution is the Poisson. When
is 0, the distribution is the negative binomial. |
Parameters: |
(fixed mean)
(parameters of variable mean) |
Support: |
|
Pdf: | | k | \Gamma(\alpha+i)\betaiλk-ie-λ | \Gamma(\alpha)i!(1+\beta)\alpha+i(k-i)! |
| \sum | | | i=0 |
|
Cdf: | | j | \Gamma(\alpha+i)\betaiλj-ie-λ | \Gamma(\alpha)i!(1+\beta)\alpha+i(j-i)! |
| \sum | | | i=0 |
|
Mean: |
|
Mode: | \begin{cases}z,z+1&\{z\inZ\}: z=(\alpha-1)\beta+λ\ \lfloorz\rfloor&rm{otherwise}\end{cases}
|
Variance: |
|
Skewness: | See - Properties
|
Kurtosis: | See - Properties
|
Mgf: |
|
The Delaporte distribution is a discrete probability distribution that has received attention in actuarial science.[1] It can be defined using the convolution of a negative binomial distribution with a Poisson distribution.[2] Just as the negative binomial distribution can be viewed as a Poisson distribution where the mean parameter is itself a random variable with a gamma distribution, the Delaporte distribution can be viewed as a compound distribution based on a Poisson distribution, where there are two components to the mean parameter: a fixed component, which has the
parameter, and a gamma-distributed variable component, which has the
and
parameters.
[3] The distribution is named for Pierre Delaporte, who analyzed it in relation to automobile accident claim counts in 1959,
[4] although it appeared in a different form as early as 1934 in a paper by Rolf von Lüders,
[5] where it was called the Formel II distribution.
Properties
The skewness of the Delaporte distribution is:
| λ+\alpha\beta(1+3\beta+2\beta2) |
\left(λ | + | | \alpha\beta(1+\beta)\right) | |
|
|
The excess kurtosis of the distribution is:
| λ+3λ2+\alpha\beta(1+6λ+6λ\beta+7\beta+12\beta2+6\beta3+3\alpha\beta+6\alpha\beta2+3\alpha\beta3) |
\left(λ+\alpha\beta(1+\beta)\right)2 |
Further reading
- Murat . M.. Szynal . D.. On moments of counting distributions satisfying the k'th-order recursion and their compound distributions. Journal of Mathematical Sciences. 1998. 4038 - 4043. 92 . 4. 10.1007/BF02432340 . 122625458. free. none.
Notes and References
- Encyclopedia: Panjer . Harry Panjer . Harry H. . Teugels . Jozef L. . Bjørn . Sundt . Encyclopedia of Actuarial Science . Discrete Parametric Distributions . 2006 . . 978-0-470-01250-5 . 10.1002/9780470012505.tad027.
- Book: Johnson. Norman Lloyd. Norman Lloyd Johnson. Kemp. Adrienne W.. Kotz. Samuel. Samuel Kotz. Univariate discrete distributions. Third. 2005. John Wiley & Sons. 978-0-471-27246-5. 241–242.
- Book: Vose. David. Risk analysis: a quantitative guide. Third, illustrated. 2008. John Wiley & Sons. 978-0-470-51284-5. 2007041696. 618–619.
- Delaporte. Pierre J.. 1960 . Quelques problèmes de statistiques mathématiques poses par l'Assurance Automobile et le Bonus pour non sinistre. Some problems of mathematical statistics as related to automobile insurance and no-claims bonus. Bulletin Trimestriel de l'Institut des Actuaires Français. 227. 87–102. French.
- von Lüders. Rolf . 1934. Die Statistik der seltenen Ereignisse. The statistics of rare events. Biometrika. 26. 1–2 . 108–128. German. 10.1093/biomet/26.1-2.108. 2332055.