Deflection (engineering) explained

In structural engineering, deflection is the degree to which a part of a long structural element (such as beam) is deformed laterally (in the direction transverse to its longitudinal axis) under a load. It may be quantified in terms of an angle (angular displacement) or a distance (linear displacement).A longitudinal deformation (in the direction of the axis) is called elongation.

The deflection distance of a member under a load can be calculated by integrating the function that mathematically describes the slope of the deflected shape of the member under that load. Standard formulas exist for the deflection of common beam configurations and load cases at discrete locations.Otherwise methods such as virtual work, direct integration, Castigliano's method, Macaulay's method or the direct stiffness method are used. The deflection of beam elements is usually calculated on the basis of the Euler–Bernoulli beam equation while that of a plate or shell element is calculated using plate or shell theory.

An example of the use of deflection in this context is in building construction. Architects and engineers select materials for various applications.

Beam deflection for various loads and supports

Beams can vary greatly in their geometry and composition. For instance, a beam may be straight or curved. It may be of constant cross section, or it may taper. It may be made entirely of the same material (homogeneous), or it may be composed of different materials (composite). Some of these things make analysis difficult, but many engineering applications involve cases that are not so complicated. Analysis is simplified if:

In this case, the equation governing the beam's deflection (

w

) can be approximated as:\frac = \fracwhere the second derivative of its deflected shape with respect to

x

(

x

being the horizontal position along the length of the beam) is interpreted as its curvature,

E

is the Young's modulus,

I

is the area moment of inertia of the cross-section, and

M

is the internal bending moment in the beam.

If, in addition, the beam is not tapered and is homogeneous, and is acted upon by a distributed load

q

, the above expression can be written as:

EI~

d4w(x)
dx4

=q(x)

This equation can be solved for a variety of loading and boundary conditions. A number of simple examples are shown below. The formulas expressed are approximations developed for long, slender, homogeneous, prismatic beams with small deflections, and linear elastic properties. Under these restrictions, the approximations should give results within 5% of the actual deflection.

Cantilever beams

Cantilever beams have one end fixed, so that the slope and deflection at that end must be zero.

End-loaded cantilever beams

The elastic deflection

\delta

and angle of deflection

\phi

(in radians) at the free end in the example image: A (weightless) cantilever beam, with an end load, can be calculated (at the free end B) using:[1] \begin\delta_B &= \frac \\[1ex]\phi_B &= \frac \endwhereNote that if the span doubles, the deflection increases eightfold. The deflection at any point,

x

, along the span of an end loaded cantilevered beam can be calculated using:[1] \begin\delta_x &= \frac (3L - x) \\[1ex]\phi_x &= \frac (2L - x)\end

Note: At

x=L

(the end of the beam), the

\deltax

and

\phix

equations are identical to the

\deltaB

and

\phiB

equations above.

Uniformly loaded cantilever beams

The deflection, at the free end B, of a cantilevered beam under a uniform load is given by:[1] \begin\delta_B &= \frac \\[1ex]\phi_B &= \frac \endwhereThe deflection at any point,

x

, along the span of a uniformly loaded cantilevered beam can be calculated using:[1] \begin\delta_x &= \frac \left(6L^2 - 4L x + x^2\right) \\[1ex]\phi_x &= \frac \left(3L^2 - 3L x + x^2\right)\end

Simply supported beams

Simply supported beams have supports under their ends which allow rotation, but not deflection.

Center-loaded simple beams

The deflection at any point,

x

, along the span of a center loaded simply supported beam can be calculated using:[1] \delta_x = \frac \left(3L^2 - 4x^2\right)for0 \leq x \leq \frac

The special case of elastic deflection at the midpoint C of a beam, loaded at its center, supported by two simple supports is then given by:[1] \delta_C = \frac where

Off-center-loaded simple beams

The maximum elastic deflection on a beam supported by two simple supports, loaded at a distance

a

from the closest support, is given by:[1] \delta_\text = \frac whereThis maximum deflection occurs at a distance

x1

from the closest support and is given by:[1] x_1 = \sqrt

Uniformly loaded simple beams

The elastic deflection (at the midpoint C) on a beam supported by two simple supports, under a uniform load (as pictured) is given by:[1] \delta_C = \frac where The deflection at any point,

x

, along the span of a uniformly loaded simply supported beam can be calculated using:[1] \delta_x = \frac \left(L^3 - 2L x^2 + x^3\right)

Combined loads

The deflection of beams with a combination of simple loads can be calculated using the superposition principle.

Change in length

The change in length

\DeltaL

of the beam is generally negligible in structures, but can be calculated by integrating the slope

\thetax

function, if the deflection function

\deltax

is known for all

x

.

Where:If the beam is uniform and the deflection at any point is known, this can be calculated without knowing other properties of the beam.

Units

The formulas supplied above require the use of a consistent set of units. Most calculations will be made in the International System of Units (SI) or US customary units, although there are many other systems of units.

International system (SI)

N

)

m

)
N
m2

=Pa

m4

US customary units (US)

lbf

)

in

)
lbf
in2
in4

Others

Other units may be used as well, as long as they are self-consistent. For example, sometimes the kilogram-force (

kgf

) unit is used to measure loads. In such a case, the modulus of elasticity must be converted to
kgf
m2
.

Structural deflection

Building codes determine the maximum deflection, usually as a fraction of the span e.g. 1/400 or 1/600. Either the strength limit state (allowable stress) or the serviceability limit state (deflection considerations among others) may govern the minimum dimensions of the member required.

The deflection must be considered for the purpose of the structure. When designing a steel frame to hold a glazed panel, one allows only minimal deflection to prevent fracture of the glass.

The deflected shape of a beam can be represented by the moment diagram, integrated (twice, rotated and translated to enforce support conditions).

See also

External links

Notes and References

  1. Book: Mechanics of Materials . Eighth. 978-1-111-57773-5. Gere. James M.. Goodno. Barry J.. January 2012 . 1083–1087.