Deep brain stimulation explained
Deep brain stimulation (DBS) is a surgical procedure that implants a neurostimulator and electrodes which sends electrical impulses to specified targets in the brain responsible for movement control. The treatment is designed for a range of movement disorders such as Parkinson's disease, essential tremor, and dystonia, as well as for certain neuropsychiatric conditions like obsessive-compulsive disorder (OCD) or neurological disorders like epilepsy.[1] The exact mechanisms of DBS are complex and not entirely clear, but it is known to modify brain activity in a structured way.[2]
DBS has been approved by the Food and Drug Administration as a treatment for essential and Parkinsonian tremor and since 1997,[3] and for Parkinson's disease (PD) since 2002. DBS was approved as humanitarian device exemptions for dystonia in 2003,[4] obsessive–compulsive disorder (OCD) in 2009, and approved for epilepsy in 2018.[5] [6] [7] DBS has been studied in clinical trials as a potential treatment for chronic pain, for various affective disorders, including major depression, for Alzheimer's Disease and drug addiction, among other brain disorders. It is one of few neurosurgical procedures that allow blinded studies.[1]
As a first approximation, DBS is thought to mimic the clinical effects of lesioning,[8] likely by attenuating (pathologically elevated) information flow through affected brain networks.[9] Thus, DBS is thought to create an 'informational lesion',[10] which can be switched off by turning off the DBS device, i.e. is largely reversible. This is a strong advantage compared to permanent brain lesions that are also applied to similar targets in similar conditions in the field of ablative stereotactic surgery.
Clinical usage
The DBS system consists of three components: an implanted pulse generator (IPG), its leads and an extension. The IPG is a battery-powered neurostimulator encased in a titanium housing, which sends electrical pulses to the brain that interfere with neural activity at the target site.
The leads are two coiled wires insulated in polyurethane with four platinum-iridium electrodes that allow delivery of electric charge from the battery back implanted in the chest wall. The battery pack is usually situated subcutaneously below the clavicle and rarely in the abdomen. The leads, in turn, are connected to the battery by an insulated extension wire which travels from the chest wall superiorly along the back of the neck below the skin, behind the ear, and finally enters the skull through a surgically made burr hole to terminate in the deep nuclei of the brain. [11] After surgery, battery dosage is titrated to individual symptoms, a process which requires repeat visits to a clinician for readjustment.[12]
DBS leads are placed in the brain according to the type of symptoms to be addressed. For non-Parkinsonian essential tremor, the lead is placed in either the ventrointermediate nucleus of the thalamus or the zona incerta;[13] for dystonia and symptoms associated with PD (rigidity, bradykinesia/akinesia, and tremor), the lead may be placed in either the globus pallidus internus or the subthalamic nucleus; for OCD and depression to the nucleus accumbens; for incessant pain to the posterior thalamic region or periaqueductal gray; and for epilepsy treatment to the anterior thalamic nucleus.
All three components are surgically implanted inside the body. Lead implantation may take place under local anesthesia or under general anesthesia ("asleep DBS"), such as for dystonia. A hole about 14 mm in diameter is drilled in the skull and the probe electrode is inserted stereotactically, using either frame-based or frameless stereotaxis.[14] During the awake procedure with local anesthesia, feedback from the person is used to determine the optimal placement of the permanent electrode. During the asleep procedure, intraoperative MRI guidance is used for direct visualization of brain tissue and device.[15] The installation of the IPG and extension leads occurs under general anesthesia.[16] The right side of the brain is stimulated to address symptoms on the left side of the body and vice versa.
Though not common, placement can be accompanied by intracranial hemorrhage, infection or obstructive hydrocephalus, which may require repositioning or a stay in the neurological intensive care unit. Long term negative effects of the device include an increased risk of decreased mental function and dementia beyond that typically seen with neurodegenerative disorders.
DBS is not considered to be a disease-modifying treatment, but rather one that improves symptoms.
Parkinson's disease
DBS is used to manage some of the symptoms of Parkinson's disease that cannot be adequately controlled with medications.[11] [17] PD is treated by applying high-frequency (> 100 Hz) stimulation to target structures in the depth of the brain. Frequently used targets include the subthalamic nucleus (STN), internal pallidum (GPi) and ventrointermediate nucleus of the thalamus (VIM).
DBS is recommended for people who have PD with motor fluctuations and tremors inadequately controlled by medication, or to those who are intolerant to medication, as long as they do not have severe neuropsychiatric problems.[18] Four areas of the brain have been treated with neural stimulators in PD, with the majority focusing on either the GPi or the STN.[19]
General differences between targets are not easy to summarize, but often include the following:
- DBS of the GPi has been shown to reduce uncontrollable movements called dyskinesias. This may sometimes allow a patient to take adequate (additional) quantities of medications (especially levodopa), thus leading to better control of symptoms.
- DBS of the subthalamic nucleus has a more sudden effect on tremor (while effect on tremor in GPi is sometimes delayed). Also, studies associated STN-DBS with reductions in dopaminergic medication.
- DBS of the VIM is more commonly done with tremor-dominant variants of PD (and essential tremor).
- Some studies suggested efficacy for DBS of the PPN in reducing freezing of gait, but results have been mixed and the target is not routinely used.
Selection of the correct DBS target is a complicated process. Multiple clinical characteristics are used to select the target including – identifying the most troublesome symptoms, the dose of levodopa that the patient is currently taking, the effects and side-effects of current medications and concurrent problems. Decisions are often made in multidisciplinary teams at specialized institutions.
The pedunculopontine nucleus has been used as an investigational target to treat gait freezing.
Essential tremor
ET is a neurological condition characterized by involuntary and rhythmic shaking and the most common movement disorder.[20] ET was the first indication to be approved for DBS (alongside Parkinsonian tremor) and before DBS had a long history of being treated with ablative brain lesioning.[21] Already in the first publication on the matter by the team of Alim Louis Benabid, it could be shown that frequencies above 100 Hz are most effective for cessation of tremor, while lower frequencies have less effect.[22] In clinical practice, frequencies between 80 and 180 Hz are typically applied. DBS electrodes commonly target the ventrointermediate nucleus of the thalamus (VIM) or ventrally adjacent areas that have been referred to as parts of the zona incerta, or posterior thalamic area. Recent metaanalytical evidence suggests that multiple targets along the circuitry of the cerebellothalamic pathway (also referred to as the dentatorubrothalamic or dentatothalamic tract) are similarly effective, i.e. modulating the cerebellar inflows into the thalamus may be key for therapeutic efficacy,[23] [24] for a review see.[25] Despite its success, DBS for ET is not without side effects, which can include speech difficulties and paresthesia. Similar if not the same surgical targets have been applied to treat ET using surgical lesioning in both historical but also modern context, for instance using MR-guided Focused Ultrasound, Gamma-Knife Radiosurgery or conventional radiofrequency lesioning. For instance, the annual volume of MRgFUS thalamotomies has recently overtaken the volume of DBS cases to treat ET.[26]
Dystonia
DBS is also an established therapeutic option for individuals with dystonia, a movement disorder characterized by sustained or repetitive muscle contractions, resulting in abnormal postures and involuntary movements. DBS is effective in treating primary generalized dystonia, and also used for focal dystonias such as cervical dystonia and task-specific dystonias (e.g., writer's cramp). In dystonia, marked effects can be reached by targeting the GPi using high frequency DBS, with large randomized trials demonstrating improvements of ~45% and significant improvements in quality of life within the first six months of treatment. Similar effects have been reported in open label trials that targeted the STN (but this target is investigational for dystonia).[9] In contrast to some symptoms in Parkinson's Disease or Essential Tremor, improvements in dystonia are often described to appear over weeks to months. This delayed response is thought to reflect the complexity of motor circuits involved in dystonia and the long-term plastic changes required for symptom relief. Despite the slower onset, many patients experience lasting and meaningful reductions in dystonia-related disability. DBS for dystonia is generally considered safe, but like all neuromodulation therapies, it comes with potential risks, including infection, hardware complications, or stimulation-related side effects such as speech difficulties. Ongoing research aims to optimize DBS targeting and stimulation settings to enhance outcomes for individuals with different types of dystonia. Recent large-scale mapping efforts have suggested slightly different optimal target sites for various forms of dystonia, such as generalized vs. cervical[27] or appendicular vs. axial phenotypes of the disorder, potentially due to differing parts of the motor system being involved in different forms. In an attempt to develop physiomarkers that could guide adaptive forms of deep brain stimulation, researchers have identified elevated synchrony in the theta band to be associated with symptom severity, which was found maximally expressed at optimal stimulation sites within the GPi.[28] [29]
Obsessive-Compulsive-Disorder
DBS for OCD,[30] Tourette's Syndrome,[31] and dystonia were first completed in 1999.[32]
DBS for OCD received a humanitarian device exemption from the FDA in 2009.[33] In Europe, the CE Mark for Deep Brain Stimulation (DBS) for Obsessive-Compulsive Disorder (OCD) was active from 2009 to 2022 but not renewed thereafter due to a lack of coveraage by government health agencies.[34]
Epilepsy
As many as 36.3% of epilepsy patients are drug-resistant, i.e. may not be sufficiently treated with medication alone.[35] These patients are at risk for significant morbidity and mortality including sudden unexpected death in epilepsy (SUDEP).[36] If a seizure focus (i.e. seizure onset zone) can be determined (using MRI and/or invasive stereo-EEG recordings) resective brain surgery that involves removing brain tissue with the ictal focus is generally preferred, since this may potentially lead to a curative outcome (i.e. a state where no seizures happen anymore). In cases where resective surgery is not an option, other neurosurgical options such as responsive neurostimulation (RNS), DBS, or vagus nerve stimulation may be considered.[37] While RNS is a method that includes brain sensing and brain stimulation, i.e. represents a form of adaptive deep brain stimulation, classical forms of DBS are also applied, typically at the standard 130 Hz frequency. The anterior nucleus of the thalamus (ANT) is the most commonly targeted area in DBS for epilepsy and the only FDA approved target site (see above). This multicenter, randomized, controlled SANTE trial (Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy) demonstrated that DBS targeting the ANT significantly reduced seizure frequency in patients with medically refractory epilepsy. Over time, patients experienced sustained seizure reductions, with some achieving more than a 50% decrease in seizures. The SANTE trial has been a pivotal study, leading to the approval of ANT-DBS for epilepsy in many countries. This region plays a key role in the network of structures that propagate seizure activity.
Beyond the ANT, several other brain regions have been explored as potential DBS targets for epilepsy. These include:
- Centromedian nucleus (CM): Located in the thalamus, CM-DBS has been used in some cases of generalized epilepsy, including Lennox-Gastaut syndrome. It targets the thalamocortical networks involved in seizure propagation and has been reported to help reduce seizure severity and frequency.[38]
- Hippocampus: Particularly in patients with temporal lobe epilepsy, hippocampal DBS has been investigated as an option due to its role in seizure propagation and memory function. Studies have generally shown promising results, particularly for temporal lobe seizures.
- Subthalamic nucleus (STN): Commonly used in Parkinson's disease, the STN has also been explored as a target for epilepsy due to its involvement in motor control and seizure modulation. Initial studies have shown seizure reduction, especially in patients with focal epilepsy.[39]
- Cerebellum: DBS of the cerebellum has been studied as a way to influence the modulation of neural circuits involved in epilepsy, although its use remains experimental.
Tourette syndrome
As mentioned above, the first DBS application for Tourette's Syndrome has been carried out by the team of Veerle Visser-Vandewalle in 1999.[31] Building upon the ablative lesion cases carried out by Rolf Hassler and colleagues,[40] Visser-Vandewalle chose the intersection between the centromedian, parafascicular and ventrooralis internus nuclei of the thalamus as her DBS target. Authors reported that, after surgery, tics disappeared and "a change in the patient's character occurred in that he had become much more kind-hearted." DBS has been used experimentally in treating adults with severe Tourette syndrome who do not respond to conventional treatment. Despite widely publicized early successes, DBS remains a highly experimental procedure for treating Tourette's, and more study is needed to determine whether long-term benefits outweigh the risks.[41] [42] [43] [44] The procedure is well tolerated, but complications include "short battery life, abrupt symptom worsening upon cessation of stimulation, hypomanic or manic conversion, and the significant time and effort involved in optimizing stimulation parameters".[45]
The procedure is invasive and expensive and requires long-term expert care. Benefits for severe Tourette's are inconclusive, considering the less robust effects of this surgery seen in the Netherlands. Tourette's is more common in pediatric populations, tending to remit in adulthood, so, in general, this would not be a recommended procedure for use on children. It may not always be obvious how to utilize DBS for a particular person because the diagnosis of Tourette's is based on a history of symptoms rather than an examination of neurological activity. Due to concern over the use of DBS in Tourette syndrome treatment, the Tourette Association of America convened a group of experts to develop recommendations guiding the use and potential clinical trials of DBS for TS.[46]
Robertson reported that DBS had been used on 55 adults by 2011, remained an experimental treatment at that time, and recommended that the procedure "should only be conducted by experienced functional neurosurgeons operating in centres which also have a dedicated Tourette syndrome clinic".[42] According to Malone et al. (2006), "Only patients with severe, debilitating, and treatment-refractory illness should be considered; while those with severe personality disorders and substance-abuse problems should be excluded."[45] Du et al. (2010) say, "As an invasive therapy, DBS is currently only advisable for severely affected, treatment-refractory TS adults".[43] Singer (2011) says, "pending determination of patient selection criteria and the outcome of carefully controlled clinical trials, a cautious approach is recommended".[41] Viswanathan et al. (2012) say DBS should be used for people with "severe functional impairment that cannot be managed medically".[47]
Depression
DBS has also been under investigational use for treatment resistant depression. Beginning in the 1950s, treatment has been attempted in the subcallosal cingulate region[48] and the ventral capsule/ventral striatum (VC/VS)[49] have shown mixed outcomes. diffusion-weighted imaging based tractography has led to the discovery of the so-called 'depression switch',[50] the intersection of four bundles that allowed more deliberate targeting of DBS in the SCC area and improved results in additional open-label studies.[51]
Beyond the SCC and VC/VS, a third target includes the so-called 'superolateral branch' of the medial forebrain bundle (MFB) at the anterior limb of the internal capsule,[52] taking a course within the capsule, rather than following a trans-hypothalamic route as known for the MFB proper.[53] This target site was discovered serendipitously when a patient with Parkinson's Disease developed hypomania under subthalamic nucleus DBS.[54] While this is not an uncommon side-effect of STN-DBS and alternative pathomechanisms have been suggested,[55] [56] the original investigators attributed the occurrence of hypomania to stimulation of a hitherto undescribed 'superolateral' branch of the MFB, which supposedly only exists in humans.[57] While anatomical descriptions as well as supposed mechanisms for this target site have been debated,[58] [59] clinical effects of this DBS target in patients with TRD have been very promising and at times with sudden onset of symptom improvements in open-label studies.[60]
Chronic pain
Stimulation of the periaqueductal gray and periventricular gray for nociceptive pain, and the internal capsule, ventral posterolateral nucleus, and ventral posteromedial nucleus for neuropathic pain has produced impressive results with some people, but results vary. One study[61] of 17 people with intractable cancer pain found that 13 were virtually pain-free and only four required opioid analgesics on release from hospital after the intervention. Most ultimately did resort to opioids, usually in the last few weeks of life.[62] DBS has also been applied for phantom limb pain.[63]
Other clinical applications
Results of DBS in people with dystonia, where positive effects often appear gradually over a period of weeks to months, indicate a role of functional reorganization in at least some cases.[64] The procedure has been tested for effectiveness in people with epilepsy that is resistant to medication.[65] DBS may reduce or eliminate epileptic seizures with programmed or responsive stimulation.
DBS of the septal areas of persons with schizophrenia has resulted in enhanced alertness, cooperation, and euphoria.[66] Persons with narcolepsy and complex-partial seizures also reported euphoria and sexual thoughts from self-elicited DBS of the septal nuclei.[67]
Orgasmic ecstasy was reported with the electrical stimulation of the brain with depth electrodes in the left hippocampus at 3mA, and the right hippocampus at 1 mA.[68]
In 2015, a group of Brazilian researchers led by neurosurgeon described a new technique that allows for simultaneous implants of electrodes called bilateral stereotactic procedure for DBS. The main benefits are less time spent on the procedure and greater accuracy.[69]
In 2016, DBS was found to improve learning and memory in a mouse model of Rett syndrome.[70] More recent (2018) work showed, that forniceal DBS upregulates genes involved in synaptic function, cell survival, and neurogenesis,[71] making some first steps at explaining the restoration of hippocampal circuit function.
Device Approval
DBS is FDA approved or has FDA device exemptions for treatment of Parkinson's Disease, dystonia, essential tremor, obsessive-compulsive disorder and epilepsy. In Europe, beyond these indications, a CE mark exists for treatment of Alzheimer's Disease. There was a past device exemption for OCD as well but this has not been renewed.[72] All other indications are considered investigational, i.e. carried out within medical studies under IRB approval.
The table below summarizes the history of FDA approval for DBS since creation of the device.
!Indication!Approval Date!Details!DBS Target!Evidence!SourceEssential Tremor (or Parkinsonian Tremor) | July 31, 1997 | The FDA approved DBS for the suppression of tremor in the upper extremity in patients with essential tremor. | Ventral intermediate nucleus of the thalamus (VIM) | The approval was based on clinical trials showing significant tremor reduction with thalamic DBS in patients with essential tremor, demonstrating long-term efficacy and safety. The key study is.[73] | FDA |
Parkinson's Disease | January 14, 2002 | Approved for advanced Parkinson's disease symptoms not adequately controlled by medications. | Subthalamic nucleus (STN) or internal globus pallidus (GPi) | The key trial that led to approval is.[74] Further large-scale randomized controlled trials such as,[75] demonstrated the superiority of DBS in the subthalamic nucleus compared to best medical therapy, improving motor function and quality of life. | FDA |
Dystonia | April 15, 2003 | Granted under a Humanitarian Device Exemption (HDE) for the treatment of chronic, intractable primary dystonia, including generalized and segmental dystonia, hemidystonia, and cervical dystonia in patients seven years of age or above. | Internal globus pallidus (GPi) | The key evidence came from smaller clinical trials under the Humanitarian Device Exemption, where DBS significantly improved motor function in patients with primary dystonia. Prominent trials include.[76] [77] | FDA |
Obsessive-Compulsive Disorder | February 19, 2009 | Approved under HDE for adjunctive treatment of severe, treatment-resistant OCD. | Nucleus Accumbens (NAc) | Initial approval came under HDE based on evidence from smaller, open-label trials, such as,[78] showing reductions in OCD symptoms in severe cases. | FDA |
Epilepsy | April 27, 2018 | Approved for bilateral stimulation of the anterior nucleus of the thalamus (ANT) as an adjunctive therapy to reduce the frequency of seizures in adults with partial-onset seizures. | Anterior nucleus of the thalamus (ANT) | The key evidence came from the SANTE trial,[79] demonstrating a significant reduction in seizure frequency in patients receiving DBS. | FDA | |
Adaptive Deep Brain Stimulation
See main article: Adaptive Deep Brain Stimulation.
Adaptive of Closed Loop Deep Brain Stimulation is a technique in which a steering signal influences when, with which amplitude or at which electrode contacts the DBS system is activated. This steering signal can be a physiological sensing signal, which is typically either recorded from the same implanted electrode or a cortical electrode/ECoG strip/grid. Alternatively, signals from wearables, that e.g. detect symptoms such as tremor, may be used to guide stimulation across time. The concept of adaptive deep brain stimulation is as old as the concept of electrical stimulation of the brain, itself, i.e. originates in the 1950ies-1960ies and was implemented by early pioneers such as Carl-Wilhelm Sem-Jacobsen, Natalia Bechtereva, José Delgado or Robert Heath. The reason these scientists came up with the concept so early was out of necessity: At the time, chronic stimulation as carried out in open-loop (conventional) DBS applications was not technically possible using fully implanted devices, since the battery technology at the time was not ready to do so. With the advent of 'modern' DBS as implemented by the team of Alim Louis Benabid, for decades, chronic, open-loop DBS became the dominant application. Here, pulses are emitted to the brain tissue in a fixed frequency (often 130 Hz) without sensing brain signals or other forms of a steering signal.It took until the 2010s, after a demonstration of efficacy of aDBS in the macaque by the team of Hagai Bergman in 2011, the first in-human application of aDBS was carried out by the team of Peter Brown in 2013, followed by the team of Alberto Priori in the same year. Since then, several companies, including Medtronic and Newronika have begun developing commercial applications of closed-loop DBS.
Adverse effects
DBS carries the risks of major surgery, with a complication rate related to the experience of the surgical team. The major complications include hemorrhage (1–2%) and infection (3–5%).[80]
The potential exists for neuropsychiatric side effects after DBS, including apathy, hallucinations, hypersexuality, cognitive dysfunction, depression, and euphoria. However, these effects may be temporary and related to (1) incorrect placement of electrodes, (2) open-loop VS closed-loop stimulation, meaning a constant stimulation or an A.I. monitoring delivery system[81] and (3) calibration of the stimulator, so these side effects are potentially reversible.[82]
Because the brain can shift slightly during surgery, the electrodes can become displaced or dislodged from the specific location. This may cause more profound complications such as personality changes, but electrode misplacement is relatively easy to identify using CT scan. Surgery complications may also occur, such as bleeding within the brain. After surgery, swelling of the brain tissue, mild disorientation, and sleepiness are normal. After 2–4 weeks, a follow-up visit is used to remove sutures, turn on the neurostimulator, and program it.
Impaired swimming skills surfaced as an unexpected risk of the procedure; several Parkinson's disease patients lost their ability to swim after receiving deep brain stimulation.[83] [84]
Mechanisms
The exact mechanism of action of DBS is not known.[85] A variety of hypotheses try to explain the mechanisms of DBS:[86] [87]
- Depolarization blockade: Electrical currents block the neuronal output at or near the electrode site.
- Synaptic inhibition: This causes an indirect regulation of the neuronal output by activating axon terminals with synaptic connections to neurons near the stimulating electrode.
- Desynchronization of abnormal oscillatory activity of neurons
- Antidromic activation either activating/blockading distant neurons or blockading slow axons
DBS represents an advance on previous treatments which involved pallidotomy (i.e., surgical ablation of the globus pallidus) or thalamotomy (i.e., surgical ablation of the thalamus).[88] Instead, a thin lead with multiple electrodes is implanted in the globus pallidus, nucleus ventralis intermedius thalami, or subthalamic nucleus, and electric pulses are used therapeutically. The lead from the implant is extended to the neurostimulator under the skin in the chest area.
Its direct effect on the physiology of brain cells and neurotransmitters is currently debated, but by sending high-frequency electrical impulses into specific areas of the brain, it can mitigate symptoms[89] and directly diminish the side effects induced by PD medications,[90] allowing a decrease in medications, or making a medication regimen more tolerable.
Manufacturers
There are three major competitors in the current market for stimulators, Boston Scientific, Medtronic and Abbott. Medtronic is developing a closed loop system which can be based on automatic feedback and Abbott allows remote programming.
See also
Further reading
- Appleby BS, Duggan PS, Regenberg A, Rabins PV . Psychiatric and neuropsychiatric adverse events associated with deep brain stimulation: A meta-analysis of ten years' experience . Movement Disorders . 22 . 12 . 1722–1728 . September 2007 . 17721929 . 10.1002/mds.21551 . 22925963 .
- Schlaepfer TE, Bewernick BH, Kayser S, Hurlemann R, Coenen VA . Deep brain stimulation of the human reward system for major depressionsndrationale, outcomes and outlook . Neuropsychopharmacology . 39 . 6 . 1303–1314 . May 2014 . 24513970 . 3988559 . 10.1038/npp.2014.28 .
- Diamond A, Shahed J, Azher S, Dat-Vuong K, Jankovic J . Globus pallidus deep brain stimulation in dystonia . Movement Disorders . 21 . 5 . 692–695 . May 2006 . 16342255 . 10.1002/mds.20767 . 29677149 .
- Book: 10.3109/9780203021651-24 . Deep Brain Stimulation for Parkinson's Disease and Movement Disorders . Bioelectromagnetic Medicine . 2004 . 271–282 . 978-0-429-22857-5 . Richter EO, Lozano AM .
External links
Notes and References
- Kringelbach ML, Jenkinson N, Owen SL, Aziz TZ . Translational principles of deep brain stimulation . Nature Reviews. Neuroscience . 8 . 8 . 623–635 . August 2007 . 17637800 . 10.1038/nrn2196 . 147427108 .
- García MR, Pearlmutter BA, Wellstead PE, Middleton RH . A slow axon antidromic blockade hypothesis for tremor reduction via deep brain stimulation . PLOS ONE . 8 . 9 . e73456 . 16 September 2013 . 24066049 . 3774723 . 10.1371/journal.pone.0073456 . free . 2013PLoSO...873456G .
- Web site: FDA approves brain implant to help reduce Parkinson's disease and essential tremor symptoms. FDA. May 23, 2016. The first device, Medtronic's Activa Deep Brain Stimulation Therapy System, was approved in 1997 for tremor associated with essential tremor and Parkinson's disease..
- News: Phillips S . 'Brain pacemaker' for a rare disorder . https://web.archive.org/web/20210428014405/https://www.nbcnews.com/id/wbna19265007 . dead . April 28, 2021 . NBC News . 17 June 2007 .
- Medtronic Receives FDA Approval for Deep Brain Stimulation Therapy for Medically Refractory Epilepsy . Medtronic . 1 May 2018 .
- Web site: FDA Approves Humanitarian Device Exemption for Deep Brain Stimulator for Severe Obsessive-Compulsive Disorder. FDA.
- Gildenberg PL . Evolution of neuromodulation . Stereotactic and Functional Neurosurgery . 83 . 2–3 . 71–79 . 2005 . 16006778 . 10.1159/000086865 . 20234898 .
- Book: Parkinson's Disease and Related Disorders, Part II . Morris JG, Owler B, Hely MA, Fung VS . 2007 . 978-0-444-52893-3 . Handbook of Clinical Neurology . 84 . 459–478 . Hydrocephalus and structural lesions . 10.1016/S0072-9752(07)84055-3 . 1132129865 . 18808964.
- Hollunder . Barbara . Ostrem . Jill L. . Sahin . Ilkem Aysu . Rajamani . Nanditha . Oxenford . Simón . Butenko . Konstantin . Neudorfer . Clemens . Reinhardt . Pablo . Zvarova . Patricia . Polosan . Mircea . Akram . Harith . Vissani . Matteo . Zhang . Chencheng . Sun . Bomin . Navratil . Pavel . March 2024 . Mapping dysfunctional circuits in the frontal cortex using deep brain stimulation . Nature Neuroscience . en . 27 . 3 . 573–586 . 10.1038/s41593-024-01570-1 . 1097-6256 . 10917675 . 38388734.
- Grill . Warren M. . Snyder . Andrea N. . Miocinovic . Svjetlana . May 2004 . Deep brain stimulation creates an informational lesion of the stimulated nucleus . NeuroReport . en . 15 . 7 . 1137–1140 . 10.1097/00001756-200405190-00011 . 15129161 . 0959-4965.
- Web site: Deep Brain Stimulation for Movement Disorders . National Institute on Neurological Disorders and Stroke .
- Volkmann J, Herzog J, Kopper F, Deuschl G . Introduction to the programming of deep brain stimulators . Movement Disorders . 17 . Suppl 3 . S181–S187 . 2002 . 11948775 . 10.1002/mds.10162 . 21988668 .
- Lee JY, Deogaonkar M, Rezai A . Deep brain stimulation of globus pallidus internus for dystonia . Parkinsonism & Related Disorders . 13 . 5 . 261–265 . July 2007 . 17081796 . 10.1016/j.parkreldis.2006.07.020 .
- Owen CM, Linskey ME . Frame-based stereotaxy in a frameless era: current capabilities, relative role, and the positive- and negative predictive values of blood through the needle . Journal of Neuro-Oncology . 93 . 1 . 139–149 . May 2009 . 19430891 . 10.1007/s11060-009-9871-y . free .
- Starr PA, Martin AJ, Ostrem JL, Talke P, Levesque N, Larson PS . Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy . Journal of Neurosurgery . 112 . 3 . 479–490 . March 2010 . 19681683 . 2866526 . 10.3171/2009.6.JNS081161 .
- Web site: Deep Brain Stimulation for Movement Disorders . University of Pittsburgh .
- U.S. Department of Health and Human Services. FDA approves implanted brain stimulator to control tremors. Retrieved February 10, 2015.
- Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, Horak FB, Okun MS, Foote KD, Krack P, Pahwa R, Henderson JM, Hariz MI, Bakay RA, Rezai A, Marks WJ, Moro E, Vitek JL, Weaver FM, Gross RE, DeLong MR . 6 . Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues . Archives of Neurology . 68 . 2 . 165 . February 2011 . 20937936 . 4523130 . 10.1001/archneurol.2010.260 .
- Follett . Kenneth A. . Weaver . Frances M. . Stern . Matthew . Hur . Kwan . Harris . Crystal L. . Luo . Ping . Marks . William J. . Rothlind . Johannes . Sagher . Oren . Moy . Claudia . Pahwa . Rajesh . Burchiel . Kim . Hogarth . Penelope . Lai . Eugene C. . Duda . John E. . 2010-06-03 . Pallidal versus Subthalamic Deep-Brain Stimulation for Parkinson's Disease . New England Journal of Medicine . en . 362 . 22 . 2077–2091 . 10.1056/NEJMoa0907083 . 20519680 . 0028-4793.
- Web site: Essential Tremor: Essential Facts for Patients . 2024-09-22 . www.movementdisorders.org.
- Neudorfer . Clemens . Kultas-Ilinsky . Kristy . Ilinsky . Igor . Paschen . Steffen . Helmers . Ann-Kristin . Cosgrove . G. Rees . Richardson . R. Mark . Horn . Andreas . Deuschl . Günther . April 2024 . The role of the motor thalamus in deep brain stimulation for essential tremor . Neurotherapeutics . en . 21 . 3 . e00313 . 10.1016/j.neurot.2023.e00313 . 11103222 . 38195310.
- Benabid . A.L. . Pollak . P. . Hoffmann . D. . Gervason . C. . Hommel . M. . Perret . J.E. . de Rougemont . J. . Gao . D.M. . February 1991 . Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus . The Lancet . en . 337 . 8738 . 403–406 . 10.1016/0140-6736(91)91175-T . 1671433.
- Nowacki . Andreas . Barlatey . Sabry . Al-Fatly . Bassam . Dembek . Till . Bot . Maarten . Green . Alexander L. . Kübler . Dorothee . Lachenmayer . M. Lenard . Debove . Ines . Segura-Amil . Alba . Horn . Andreas . Visser-Vandewalle . Veerle . Schuurman . Rick . Barbe . Michael . Aziz . Tipu Z. . May 2022 . Probabilistic Mapping Reveals Optimal Stimulation Site in Essential Tremor . Annals of Neurology . en . 91 . 5 . 602–612 . 10.1002/ana.26324 . 35150172 . 0364-5134.
- Neudorfer . Clemens . Kroneberg . Daniel . Al-Fatly . Bassam . Goede . Lukas . Kübler . Dorothee . Faust . Katharina . van Rienen . Ursula . Tietze . Anna . Picht . Thomas . Herrington . Todd M. . Middlebrooks . Erik H. . Kühn . Andrea . Schneider . Gerd-Helge . Horn . Andreas . May 2022 . Personalizing Deep Brain Stimulation Using Advanced Imaging Sequences . Annals of Neurology . en . 91 . 5 . 613–628 . 10.1002/ana.26326 . 35165921 . 0364-5134.
- Fox . Michael D. . Deuschl . Günther . May 2022 . Converging on a Neuromodulation Target for Tremor . Annals of Neurology . en . 91 . 5 . 581–584 . 10.1002/ana.26361 . 35362142 . 0364-5134.
- Joutsa . Juho . Lipsman . Nir . Horn . Andreas . Cosgrove . G Rees . Fox . Michael D . 2023-08-01 . The return of the lesion for localization and therapy . Brain . en . 146 . 8 . 3146–3155 . 10.1093/brain/awad123 . 0006-8950 . 10393408 . 37040563.
- Horn . Andreas . Reich . Martin M. . Ewert . Siobhan . Li . Ningfei . Al-Fatly . Bassam . Lange . Florian . Roothans . Jonas . Oxenford . Simon . Horn . Isabel . Paschen . Steffen . Runge . Joachim . Wodarg . Fritz . Witt . Karsten . Nickl . Robert C. . Wittstock . Matthias . 2022-04-05 . Optimal deep brain stimulation sites and networks for cervical vs. generalized dystonia . Proceedings of the National Academy of Sciences . en . 119 . 14 . e2114985119 . 10.1073/pnas.2114985119 . free . 0027-8424 . 9168456 . 35357970. 2022PNAS..11914985H .
- Neumann . Wolf-Julian . Horn . Andreas . Ewert . Siobhan . Huebl . Julius . Brücke . Christof . Slentz . Colleen . Schneider . Gerd-Helge . Kühn . Andrea A. . December 2017 . A localized pallidal physiomarker in cervical dystonia . Annals of Neurology . en . 82 . 6 . 912–924 . 10.1002/ana.25095 . 29130551 . 0364-5134.
- Barow . Ewgenia . Neumann . Wolf-Julian . Brücke . Christof . Huebl . Julius . Horn . Andreas . Brown . Peter . Krauss . Joachim K. . Schneider . Gerd-Helge . Kühn . Andrea A. . November 2014 . Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements . Brain . en . 137 . 11 . 3012–3024 . 10.1093/brain/awu258 . 1460-2156 . 4813762 . 25212852.
- Nuttin . Bart . Cosyns . Paul . Demeulemeester . Hilde . Gybels . Jan . Meyerson . Björn . October 1999 . Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder . The Lancet . en . 354 . 9189 . 1526 . 10.1016/S0140-6736(99)02376-4. 10551504 .
- Vandewalle . V . van der Linden . Chr . Groenewegen . Hj . Caemaert . J . February 1999 . Stereotactic treatment of Gilles de la Tourette syndrome by high frequency stimulation of thalamus . The Lancet . en . 353 . 9154 . 724 . 10.1016/S0140-6736(98)05964-9. 10073521 .
- Krauss . Joachim K . Pohle . Thomas . Weber . Sabine . Ozdoba . Christoph . Burgunder . Jean-Marc . September 1999 . Bilateral stimulation of globus pallidus internus for treatment of cervical dystonia . The Lancet . en . 354 . 9181 . 837–838 . 10.1016/S0140-6736(99)80022-1. 10485734 .
- Web site: FDA Humanitarian Device Exemption Approval for OCD .
- Mosley . Philip E . Velakoulis . Dennis . Farrand . Sarah . Marsh . Rodney . Mohan . Adith . Castle . David . Sachdev . Perminder S . May 2022 . Deep brain stimulation for treatment-refractory obsessive-compulsive disorder should be an accepted therapy in Australia . Australian & New Zealand Journal of Psychiatry . en . 56 . 5 . 430–436 . 10.1177/00048674211031482 . 34263654 . 0004-8674.
- 6 . Sultana B, Panzini MA, Veilleux Carpentier A, Comtois J, Rioux B, Gore G, Bauer PR, Kwon CS, Jetté N, Josephson CB, Keezer MR . April 2021 . Incidence and Prevalence of Drug-Resistant Epilepsy: A Systematic Review and Meta-analysis . Neurology . 96 . 17 . 805–817 . 10.1212/WNL.0000000000011839 . 33722992 . 233401199 . free . 1866/26896.
- Sperling MR . February 2004 . The consequences of uncontrolled epilepsy . CNS Spectrums . 9 . 2 . 98–101, 106–9 . 10.1017/s1092852900008464 . 14999166 . 32869839.
- Benbadis . Selim R. . Geller . Eric . Ryvlin . Philippe . Schachter . Steven . Wheless . James . Doyle . Werner . Vale . Fernando L. . November 2018 . Putting it all together: Options for intractable epilepsy . Epilepsy & Behavior . en . 88 . 33–38 . 10.1016/j.yebeh.2018.05.030. 30241957 .
- Vetkas . Artur . Fomenko . Anton . Germann . Jürgen . Sarica . Can . Iorio-Morin . Christian . Samuel . Nardin . Yamamoto . Kazuaki . Milano . Vanessa . Cheyuo . Cletus . Zemmar . Ajmal . Elias . Gavin . Boutet . Alexandre . Loh . Aaron . Santyr . Brendan . Gwun . Dave . March 2022 . Deep brain stimulation targets in epilepsy: Systematic review and meta-analysis of anterior and centromedian thalamic nuclei and hippocampus . Epilepsia . en . 63 . 3 . 513–524 . 10.1111/epi.17157 . 34981509 . 0013-9580.
- Yan . Hao . Ren . Liankun . Yu . Tao . December 2022 . Deep brain stimulation of the subthalamic nucleus for epilepsy . Acta Neurologica Scandinavica . en . 146 . 6 . 798–804 . 10.1111/ane.13707 . 0001-6314. free . 36134756 .
- Hassler . Rolf . raitement stéréotaxique des tics et cris inarticulés ou coprolaliques considérés comme phénomene d'obsession motrice au cours de la maladie de Gilles de la Tourette . Rev Neurol . 1970.
- Book: 10.1016/B978-0-444-52014-2.00046-X . Tourette syndrome and other tic disorders . Hyperkinetic Movement Disorders . Handbook of Clinical Neurology . 2011 . Singer HS . 100 . 641–657 . 21496613 . 978-0-444-52014-2 . Also see Singer HS . Tourette's syndrome: from behaviour to biology . The Lancet. Neurology . 4 . 3 . 149–159 . March 2005 . 15721825 . 10.1016/S1474-4422(05)01012-4 . 20181150 .
- Robertson MM . Gilles de la Tourette syndrome: the complexities of phenotype and treatment . British Journal of Hospital Medicine . 72 . 2 . 100–107 . February 2011 . 21378617 . 10.12968/hmed.2011.72.2.100 .
- Du JC, Chiu TF, Lee KM, Wu HL, Yang YC, Hsu SY, Sun CS, Hwang B, Leckman JF . 6 . Tourette syndrome in children: an updated review . Pediatrics and Neonatology . 51 . 5 . 255–264 . October 2010 . 20951354 . 10.1016/S1875-9572(10)60050-2 . free .
- [Tourette Association of America|Tourette Syndrome Association]
- Book: Behavioral neurosurgery . 241–247 . . 16536372 . Walkup JT, Mink JW, Hollenbeck PJ . Tourette Syndrome . Advances in Neurology . 2006 . 99 . Lippincott Williams & Wilkins . 978-0-7817-9970-6 .
- Mink JW, Walkup J, Frey KA, Como P, Cath D, Delong MR, Erenberg G, Jankovic J, Juncos J, Leckman JF, Swerdlow N, Visser-Vandewalle V, Vitek JL . 6 . Patient selection and assessment recommendations for deep brain stimulation in Tourette syndrome . Movement Disorders . 21 . 11 . 1831–1838 . November 2006 . 16991144 . 10.1002/mds.21039 . free . Tourette Syndrome Association . 16353255 . 2027.42/55891 .
- Viswanathan A, Jimenez-Shahed J, Baizabal Carvallo JF, Jankovic J . Deep brain stimulation for Tourette syndrome: target selection . Stereotactic and Functional Neurosurgery . 90 . 4 . 213–224 . 2012 . 22699684 . 10.1159/000337776 . free .
- Mayberg . Helen S. . Lozano . Andres M. . Voon . Valerie . McNeely . Heather E. . Seminowicz . David . Hamani . Clement . Schwalb . Jason M. . Kennedy . Sidney H. . March 2005 . Deep Brain Stimulation for Treatment-Resistant Depression . Neuron . en . 45 . 5 . 651–660 . 10.1016/j.neuron.2005.02.014. 15748841 .
- Dougherty . Darin D. . Rezai . Ali R. . Carpenter . Linda L. . Howland . Robert H. . Bhati . Mahendra T. . O'Reardon . John P. . Eskandar . Emad N. . Baltuch . Gordon H. . Machado . Andre D. . Kondziolka . Douglas . Cusin . Cristina . Evans . Karleyton C. . Price . Lawrence H. . Jacobs . Karen . Pandya . Mayur . August 2015 . A Randomized Sham-Controlled Trial of Deep Brain Stimulation of the Ventral Capsule/Ventral Striatum for Chronic Treatment-Resistant Depression . Biological Psychiatry . en . 78 . 4 . 240–248 . 10.1016/j.biopsych.2014.11.023. 25726497 .
- Choi . Ki Sueng . Riva-Posse . Patricio . Gross . Robert E. . Mayberg . Helen S. . 2015-11-01 . Mapping the "Depression Switch" During Intraoperative Testing of Subcallosal Cingulate Deep Brain Stimulation . JAMA Neurology . en . 72 . 11 . 1252–1260 . 10.1001/jamaneurol.2015.2564 . 2168-6149 . 4834289 . 26408865.
- Riva-Posse . P . Choi . K S . Holtzheimer . P E . Crowell . A L . Garlow . S J . Rajendra . J K . McIntyre . C C . Gross . R E . Mayberg . H S . April 2018 . A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression . Molecular Psychiatry . en . 23 . 4 . 843–849 . 10.1038/mp.2017.59 . 1359-4184 . 5636645 . 28397839.
- Coenen . Volker A. . Schlaepfer . Thomas E. . Varkuti . Balint . Schuurman . P. Rick . Reinacher . Peter C. . Voges . Juergen . Zrinzo . Ludvic . Blomstedt . Patric . Fenoy . Albert J. . Hariz . Marwan . November 2019 . Surgical decision making for deep brain stimulation should not be based on aggregated normative data mining . Brain Stimulation . en . 12 . 6 . 1345–1348 . 10.1016/j.brs.2019.07.014. 31353286 .
- Coenen . Volker A. . Döbrössy . Máté D. . Teo . Shi Jia . Wessolleck . Johanna . Sajonz . Bastian E. A. . Reinacher . Peter C. . Thierauf-Emberger . Annette . Spittau . Björn . Leupold . Jochen . von Elverfeldt . Dominik . Schlaepfer . Thomas E. . Reisert . Marco . January 2022 . Diverging prefrontal cortex fiber connection routes to the subthalamic nucleus and the mesencephalic ventral tegmentum investigated with long range (normative) and short range (ex-vivo high resolution) 7T DTI . Brain Structure and Function . en . 227 . 1 . 23–47 . 10.1007/s00429-021-02373-x . 1863-2653 . 8741702 . 34482443.
- Coenen . Volker A. . Honey . Christopher R. . Hurwitz . Trevor . Rahman . Ahmed A. . McMaster . Jacqueline . Bürgel . Uli . Mädler . Burkhard . June 2009 . Medial Forebrain Bundle Stimulation As a Pathophysiological Mechanism for Hypomania in Subthalamic Nucleus Deep Brain Stimulation for Parkinson's Disease . Neurosurgery . en . 64 . 6 . 1106–1115 . 10.1227/01.NEU.0000345631.54446.06 . 19487890 . 0148-396X.
- Volkmann . Jens . Daniels . Christine . Witt . Karsten . September 2010 . Neuropsychiatric effects of subthalamic neurostimulation in Parkinson disease . Nature Reviews Neurology . en . 6 . 9 . 487–498 . 10.1038/nrneurol.2010.111 . 20680036 . 1759-4758.
- Bouthour . Walid . Mégevand . Pierre . Donoghue . John . Lüscher . Christian . Birbaumer . Niels . Krack . Paul . June 2019 . Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond . Nature Reviews Neurology . en . 15 . 6 . 343–352 . 10.1038/s41582-019-0166-4 . 30936569 . 1759-4758.
- Coenen . Volker A. . Döbrössy . Máté D. . Teo . Shi Jia . Wessolleck . Johanna . Sajonz . Bastian E. A. . Reinacher . Peter C. . Thierauf-Emberger . Annette . Spittau . Björn . Leupold . Jochen . von Elverfeldt . Dominik . Schlaepfer . Thomas E. . Reisert . Marco . January 2022 . Diverging prefrontal cortex fiber connection routes to the subthalamic nucleus and the mesencephalic ventral tegmentum investigated with long range (normative) and short range (ex-vivo high resolution) 7T DTI . Brain Structure and Function . en . 227 . 1 . 23–47 . 10.1007/s00429-021-02373-x . 1863-2653 . 8741702 . 34482443.
- Haber . Suzanne N. . Yendiki . Anastasia . Anastasia Yendiki . Jbabdi . Saad . November 2021 . Four Deep Brain Stimulation Targets for Obsessive-Compulsive Disorder: Are They Different? . Biological Psychiatry . en . 90 . 10 . 667–677 . 10.1016/j.biopsych.2020.06.031 . 9569132 . 32951818.
- Bouthour . Walid . Mégevand . Pierre . Donoghue . John . Lüscher . Christian . Birbaumer . Niels . Krack . Paul . June 2019 . Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond . Nature Reviews Neurology . en . 15 . 6 . 343–352 . 10.1038/s41582-019-0166-4 . 30936569 . 1759-4758.
- Bewernick . Bettina H. . Kayser . Sarah . Gippert . Sabrina M. . Switala . Christina . Coenen . Volker A. . Schlaepfer . Thomas E. . May 2017 . Deep brain stimulation to the medial forebrain bundle for depression- long-term outcomes and a novel data analysis strategy . Brain Stimulation . en . 10 . 3 . 664–671 . 10.1016/j.brs.2017.01.581. 28259544 .
- Young RF, Brechner T . March 1986 . Electrical stimulation of the brain for relief of intractable pain due to cancer . Cancer . 57 . 6 . 1266–1272 . 10.1002/1097-0142(19860315)57:6<1266::aid-cncr2820570634>3.0.co;2-q . 3484665 . 41929961 .
- Book: Clinical pain management: Cancer pain . Johnson MI, Oxberry SG, Robb K . Hodder Arnold . 2008 . 978-0-340-94007-5 . Sykes N, Bennett MI & Yuan C-S . 2nd . London . 235–250 . Stimulation-induced analgesia.
- 6 . Kringelbach ML, Jenkinson N, Green AL, Owen SL, Hansen PC, Cornelissen PL, Holliday IE, Stein J, Aziz TZ . February 2007 . Deep brain stimulation for chronic pain investigated with magnetoencephalography . NeuroReport . 18 . 3 . 223–228 . 10.1.1.511.2667 . 10.1097/wnr.0b013e328010dc3d . 17314661 . 7091307.
- Krauss JK . 2002 . Deep brain stimulation for dystonia in adults. Overview and developments . Stereotactic and Functional Neurosurgery . 78 . 3–4 . 168–182 . 10.1159/000068963 . 12652041 . 71888143.
- Wu C, Sharan AD . January–February 2013 . Neurostimulation for the treatment of epilepsy: a review of current surgical interventions . Neuromodulation . 16 . 1 . 10–24; discussion 24 . 10.1111/j.1525-1403.2012.00501.x . 22947069 . 1711587.
- Heath RG . January 1972 . Pleasure and brain activity in man. Deep and surface electroencephalograms during orgasm . The Journal of Nervous and Mental Disease . 154 . 1 . 3–18 . 10.1097/00005053-197201000-00002 . 5007439 . 136706.
- Faria MA . 2013 . Violence, mental illness, and the brain - A brief history of psychosurgery: Part 3 - From deep brain stimulation to amygdalotomy for violent behavior, seizures, and pathological aggression in humans . Surgical Neurology International . 4 . 1 . 91 . 10.4103/2152-7806.115162 . 3740620 . 23956934 . free.
- Surbeck W, Bouthillier A, Nguyen DK . 2013 . Bilateral cortical representation of orgasmic ecstasy localized by depth electrodes . Epilepsy & Behavior Case Reports . 1 . 62–65 . 10.1016/j.ebcr.2013.03.002 . 4150648 . 25667829.
- 6 . Fonoff ET, Azevedo A, Angelos JS, Martinez RC, Navarro J, Reis PR, Sepulveda ME, Cury RG, Ghilardi MG, Teixeira MJ, Lopez WO . July 2016 . Simultaneous bilateral stereotactic procedure for deep brain stimulation implants: a significant step for reducing operation time . Journal of Neurosurgery . 125 . 1 . 85–89 . 10.3171/2015.7.JNS151026 . 26684776 . free.
- 6 . Lu H, Ash RT, He L, Kee SE, Wang W, Yu D, Hao S, Meng X, Ure K, Ito-Ishida A, Tang B, Sun Y, Ji D, Tang J, Arenkiel BR, Smirnakis SM, Zoghbi HY . August 2016 . Loss and Gain of MeCP2 Cause Similar Hippocampal Circuit Dysfunction that Is Rescued by Deep Brain Stimulation in a Rett Syndrome Mouse Model . Neuron . 91 . 4 . 739–747 . 10.1016/j.neuron.2016.07.018 . 5019177 . 27499081.
- 6 . Pohodich AE, Yalamanchili H, Raman AT, Wan YW, Gundry M, Hao S, Jin H, Tang J, Liu Z, Zoghbi HY . March 2018 . Forniceal deep brain stimulation induces gene expression and splicing changes that promote neurogenesis and plasticity . eLife . 7 . 10.7554/elife.34031 . 5906096 . 29570050 . free.
- Visser-Vandewalle . Veerle . Andrade . Pablo . Mosley . Philip E. . Greenberg . Benjamin D. . Schuurman . Rick . McLaughlin . Nicole C. . Voon . Valerie . Krack . Paul . Foote . Kelly D. . Mayberg . Helen S. . Figee . Martijn . Kopell . Brian H. . Polosan . Mircea . Joyce . Eileen M. . Chabardes . Stephan . August 2022 . Deep brain stimulation for obsessive–compulsive disorder: a crisis of access . Nature Medicine . en . 28 . 8 . 1529–1532 . 10.1038/s41591-022-01879-z . 35840727 . 1078-8956.
- Benabid . A.L. . Pollak . P. . Hoffmann . D. . Gervason . C. . Hommel . M. . Perret . J.E. . de Rougemont . J. . Gao . D.M. . February 1991 . Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus . The Lancet . en . 337 . 8738 . 403–406 . 10.1016/0140-6736(91)91175-T. 1671433 .
- 2001-09-27 . Deep-Brain Stimulation of the Subthalamic Nucleus or the Pars Interna of the Globus Pallidus in Parkinson's Disease . New England Journal of Medicine . en . 345 . 13 . 956–963 . 10.1056/NEJMoa000827 . 11575287 . 0028-4793 . Deep-Brain Stimulation for Parkinson's Disease Study Group . Obeso . J. A. . Olanow . C. W. . Rodriguez-Oroz . M. C. . Krack . P. . Kumar . R. . Lang . A. E. .
- Deuschl . Günther . Schade-Brittinger . Carmen . Krack . Paul . Volkmann . Jens . Schäfer . Helmut . Bötzel . Kai . Daniels . Christine . Deutschländer . Angela . Dillmann . Ulrich . Eisner . Wilhelm . Gruber . Doreen . Hamel . Wolfgang . Herzog . Jan . Hilker . Rüdiger . Klebe . Stephan . 2006-08-31 . A Randomized Trial of Deep-Brain Stimulation for Parkinson's Disease . New England Journal of Medicine . en . 355 . 9 . 896–908 . 10.1056/NEJMoa060281 . 16943402 . 0028-4793.
- Vidailhet . Marie . Vercueil . Laurent . Houeto . Jean-Luc . Krystkowiak . Pierre . Benabid . Alim-Louis . Cornu . Philippe . Lagrange . Christelle . Tézenas du Montcel . Sophie . Dormont . Didier . Grand . Sylvie . Blond . Serge . Detante . Olivier . Pillon . Bernard . Ardouin . Claire . Agid . Yves . 2005-02-03 . Bilateral Deep-Brain Stimulation of the Globus Pallidus in Primary Generalized Dystonia . New England Journal of Medicine . en . 352 . 5 . 459–467 . 10.1056/NEJMoa042187 . 15689584 . 0028-4793.
- Kupsch . Andreas . Benecke . Reiner . Müller . Jörg . Trottenberg . Thomas . Schneider . Gerd-Helge . Poewe . Werner . Eisner . Wilhelm . Wolters . Alexander . Müller . Jan-Uwe . Deuschl . Günther . Pinsker . Marcus O. . Skogseid . Inger Marie . Roeste . Geir Ketil . Vollmer-Haase . Juliane . Brentrup . Angela . 2006-11-09 . Pallidal Deep-Brain Stimulation in Primary Generalized or Segmental Dystonia . New England Journal of Medicine . en . 355 . 19 . 1978–1990 . 10.1056/NEJMoa063618 . 17093249 . 0028-4793.
- Nuttin . Bart J. . Gabriëls . Loes A. . Cosyns . Paul R. . Meyerson . Björn A. . Andréewitch . Sergej . Sunaert . Stefan G. . Maes . Alex F. . Dupont . Patrick J. . Gybels . Jan M. . Gielen . Frans . Demeulemeester . Hilde G. . June 2003 . Long-term Electrical Capsular Stimulation in Patients with Obsessive-Compulsive Disorder . Neurosurgery . en . 52 . 6 . 1263–1274 . 10.1227/01.NEU.0000064565.49299.9A . 12762871 . 0148-396X.
- Fisher . Robert . Salanova . Vicenta . Witt . Thomas . Worth . Robert . Henry . Thomas . Gross . Robert . Oommen . Kalarickal . Osorio . Ivan . Nazzaro . Jules . Labar . Douglas . Kaplitt . Michael . Sperling . Michael . Sandok . Evan . Neal . John . Handforth . Adrian . May 2010 . Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy . Epilepsia . en . 51 . 5 . 899–908 . 10.1111/j.1528-1167.2010.02536.x . 20331461 . 0013-9580.
- Doshi PK . Long-term surgical and hardware-related complications of deep brain stimulation . Stereotactic and Functional Neurosurgery . 89 . 2 . 89–95 . April 2011 . 21293168 . 10.1159/000323372 . 10553177 .
- Scangos KW, Makhoul GS, Sugrue LP, Chang EF, Krystal AD . State-dependent responses to intracranial brain stimulation in a patient with depression . Nature Medicine . 27 . 2 . 229–231 . February 2021 . 33462446 . 8284979 . 10.1038/s41591-020-01175-8 .
- Burn DJ, Tröster AI . Neuropsychiatric complications of medical and surgical therapies for Parkinson's disease . Journal of Geriatric Psychiatry and Neurology . 17 . 3 . 172–180 . September 2004 . 15312281 . 10.1177/0891988704267466 . 441486 .
- News: George J . Deep Brain Stimulation May Put Parkinson's Patients at Risk for Drowning . MedPage Today . 27 November 2019 .
- Bangash OK, Thorburn M, Garcia-Vega J, Walters S, Stell R, Starkstein SE, Lind CR . Drowning hazard with deep brain stimulation: case report . Journal of Neurosurgery . 124 . 5 . 1513–1516 . May 2016 . 26566200 . 10.3171/2015.5.JNS15589 . free .
- Book: Mogilner A.Y. . Benabid A.L. . Rezai A.R. . Chronic Therapeutic Brain Stimulation: History, Current Clinical Indications, and Future Prospects . Markov, Marko . Paul J. Rosch . Bioelectromagnetic medicine . Marcel Dekker . New York . 2004 . 133–151 . 978-0-8247-4700-8 .
- McIntyre CC, Thakor NV . Uncovering the mechanisms of deep brain stimulation for Parkinson's disease through functional imaging, neural recording, and neural modeling . Critical Reviews in Biomedical Engineering . 30 . 4–6 . 249–281 . 2002 . 12739751 . 10.1615/critrevbiomedeng.v30.i456.20 .
- Herrington TM, Cheng JJ, Eskandar EN . Mechanisms of deep brain stimulation . Journal of Neurophysiology . 115 . 1 . 19–38 . January 2016 . 26510756 . 4760496 . 10.1152/jn.00281.2015 .
- Machado A, Rezai AR, Kopell BH, Gross RE, Sharan AD, Benabid AL . Deep brain stimulation for Parkinson's disease: surgical technique and perioperative management . Movement Disorders . 21. Suppl 14 . S247–S258 . June 2006 . 16810722 . 10.1002/mds.20959 . 18194178 .
- Moro E, Lang AE . Criteria for deep-brain stimulation in Parkinson's disease: review and analysis . Expert Review of Neurotherapeutics . 6 . 11 . 1695–1705 . November 2006 . 17144783 . 10.1586/14737175.6.11.1695 . 20857769 .
- Apetauerova D, Ryan RK, Ro SI, Arle J, Shils J, Papavassiliou E, Tarsy D . End of day dyskinesia in advanced Parkinson's disease can be eliminated by bilateral subthalamic nucleus or globus pallidus deep brain stimulation . Movement Disorders . 21 . 8 . 1277–1279 . August 2006 . 16637040 . 10.1002/mds.20896 . 42122286 .