Decision tree model explained
In computational complexity the decision tree model is the model of computation in which an algorithm is considered to be basically a decision tree, i.e., a sequence of queries or tests that are done adaptively, so the outcome of previous tests can influence the tests performed next.
Typically, these tests have a small number of outcomes (such as a yes–no question) and can be performed quickly (say, with unit computational cost), so the worst-case time complexity of an algorithm in the decision tree model corresponds to the depth of the corresponding decision tree. This notion of computational complexity of a problem or an algorithm in the decision tree model is called its decision tree complexity or query complexity.
Decision trees models are instrumental in establishing lower bounds for complexity theory for certain classes of computational problems and algorithms. Several variants of decision tree models have been introduced, depending on the computational model and type of query algorithms are allowed to perform.
For example, a decision tree argument is used to show that a comparison sort of
items must take
comparisons. For comparison sorts, a query is a comparison of two items
, with two outcomes (assuming no items are equal): either
or
. Comparison sorts can be expressed as a decision tree in this model, since such sorting algorithms only perform these types of queries.
Comparison trees and lower bounds for sorting
Decision trees are often employed to understand algorithms for sorting and other similar problems; this was first done by Ford and Johnson.[1]
For example, many sorting algorithms are comparison sorts, which means that they only gain information about an input sequence
via local comparisons: testing whether
,
, or
. Assuming that the items to be sorted are all distinct and comparable, this can be rephrased as a yes-or-no question: is
?
that describes how the input sequence was scrambled from the fully ordered list of items. (The inverse of this permutation,
, re-orders the input sequence.)
One can show that comparison sorts must use
comparisons through a simple argument: for an algorithm to be correct, it must be able to output every possible permutation of
elements; otherwise, the algorithm would fail for that particular permutation as input. So, its corresponding decision tree must have at least as many leaves as permutations:
leaves. Any binary tree with at least
leaves has depth at least
log2(n!)=\Omega(nlog2(n))
, so this is a lower bound on the run time of a comparison sorting algorithm. In this case, the existence of numerous comparison-sorting algorithms having this time complexity, such as
mergesort and
heapsort, demonstrates that the bound is tight.
[2] This argument does not use anything about the type of query, so it in fact proves a lower bound for any sorting algorithm that can be modeled as a binary decision tree. In essence, this is a rephrasing of the information-theoretic argument that a correct sorting algorithm must learn at least
bits of information about the input sequence. As a result, this also works for randomized decision trees as well.
Other decision tree lower bounds do use that the query is a comparison. For example, consider the task of only using comparisons to find the smallest number among
numbers. Before the smallest number can be determined, every number except the smallest must "lose" (compare greater) in at least one comparison. So, it takes at least
comparisons to find the minimum. (The information-theoretic argument here only gives a lower bound of
.) A similar argument works for general lower bounds for computing
order statistics.
[2] Linear and algebraic decision trees
as input. The tests in linear decision trees are linear functions: for a particular choice of real numbers
, output the sign of
. (Algorithms in this model can only depend on the sign of the output.) Comparison trees are linear decision trees, because the comparison between
and
corresponds to the linear function
. From its definition, linear decision trees can only specify functions
whose
fibers can be constructed by taking unions and intersections of half-spaces.
Algebraic decision trees are a generalization of linear decision trees that allow the test functions to be polynomials of degree
. Geometrically, the space is divided into semi-algebraic sets (a generalization of hyperplane).
These decision tree models, defined by Rabin[3] and Reingold,[4] are often used for proving lower bounds in computational geometry.[5] For example, Ben-Or showed that element uniqueness (the task of computing
, where
is 0 if and only if there exist distinct coordinates
such that
) requires an algebraic decision tree of depth
.
[6] This was first showed for linear decision models by Dobkin and Lipton.
[7] They also show a
lower bound for linear decision trees on the knapsack problem, generalized to algebraic decision trees by Steele and Yao.
[8] Boolean decision tree complexities
for an input
. The queries correspond to reading a bit of the input,
, and the output is
. Each query may be dependent on previous queries. There are many types of computational models using decision trees that could be considered, admitting multiple complexity notions, called
complexity measures.
Deterministic decision tree
If the output of a decision tree is
, for all
, the decision tree is said to "compute"
. The depth of a tree is the maximum number of queries that can happen before a leaf is reached and a result obtained.
, the
deterministic decision tree complexity of
is the smallest depth among all deterministic decision trees that compute
.
Randomized decision tree
One way to define a randomized decision tree is to add additional nodes to the tree, each controlled by a probability
. Another equivalent definition is to define it as a distribution over deterministic decision trees. Based on this second definition, the complexity of the randomized tree is defined as the largest depth among all the trees in the support of the underlying distribution.
is defined as the complexity of the lowest-depth randomized decision tree whose result is
with probability at least
for all
(i.e., with bounded 2-sided error).
is known as the Monte Carlo randomized decision-tree complexity, because the result is allowed to be incorrect with bounded two-sided error. The Las Vegas decision-tree complexity
measures the expected depth of a decision tree that must be correct (i.e., has zero-error). There is also a one-sided bounded-error version which is denoted by
.Nondeterministic decision tree
The nondeterministic decision tree complexity of a function is known more commonly as the certificate complexity of that function. It measures the number of input bits that a nondeterministic algorithm would need to look at in order to evaluate the function with certainty.
Formally, the certificate complexity of
at
is the size of the smallest subset of indices
such that, for all
, if
for all
, then
. The certificate complexity of
is the maximum certificate complexity over all
. The analogous notion where one only requires the verifier to be correct with 2/3 probability is denoted
.
Quantum decision tree
The quantum decision tree complexity
is the depth of the lowest-depth quantum decision tree that gives the result
with probability at least
for all
. Another quantity,
, is defined as the depth of the lowest-depth quantum decision tree that gives the result
with probability 1 in all cases (i.e. computes
exactly).
and
are more commonly known as quantum query complexities, because the direct definition of a quantum decision tree is more complicated than in the classical case. Similar to the randomized case, we define
and
.These notions are typically bounded by the notions of degree and approximate degree. The degree of
, denoted
, is the smallest degree of any polynomial
satisfying
for all
. The
approximate degree of
, denoted
, is the smallest degree of any polynomial
satisfying
whenever
and
whenever
.
Beals et al. established that
and
Q2(f)\geq\widetilde{\deg}(f)/2
.
[9] Relationships between boolean function complexity measures
It follows immediately from the definitions that for all
-bit Boolean functions
,
Q2(f)\leqR2(f)\leqR1(f)\leqR0(f)\leqD(f)\leqn
, and
Q2(f)\leqQ0(f)\leqD(f)\leqn
. Finding the best upper bounds in the converse direction is a major goal in the field of query complexity.
All of these types of query complexity are polynomially related. Blum and Impagliazzo,[10] Hartmanis and Hemachandra, and Tardos[11] independently discovered that
.
Noam Nisan found that the Monte Carlo randomized decision tree complexity is also polynomially related to deterministic decision tree complexity:
.
[12] (Nisan also showed that
.) A tighter relationship is known between the Monte Carlo and Las Vegas models:
.
[13] This relationship is optimal up to polylogarithmic factors.
[14] As for quantum decision tree complexities,
, and this bound is tight.
[15] [14] Midrijanis showed that
,
[16] [17] improving a quartic bound due to Beals et al.
[9] It is important to note that these polynomial relationships are valid only for total Boolean functions. For partial Boolean functions, that have a domain a subset of
, an exponential separation between
and
is possible; the first example of such a problem was discovered by
Deutsch and Jozsa.
Sensitivity conjecture
See main article: Sensitivity theorem.
, the
sensitivity of
is defined to be the maximum sensitivity of
over all
, where the sensitivity of
at
is the number of single-bit changes in
that change the value of
. Sensitivity is related to the notion of total influence from the
analysis of Boolean functions, which is equal to
average sensitivity over all
.
The sensitivity conjecture is the conjecture that sensitivity is polynomially related to query complexity; that is, there exists exponent
such that, for all
,
and
. One can show through a simple argument that
, so the conjecture is specifically concerned about finding a lower bound for sensitivity. Since all of the previously-discussed complexity measures are polynomially related, the precise type of complexity measure is not relevant. However, this is typically phrased as the question of relating sensitivity with block sensitivity.
The block sensitivity of
, denoted
, is defined to be the maximum block sensitivity of
over all
. The block sensitivity of
at
is the maximum number
of disjoint subsets
such that, for any of the subsets
, flipping the bits of
corresponding to
changes the value of
.
[12] In 2019, Hao Huang proved the sensitivity conjecture, showing that
.
[18] [19] See also
References
Surveys
Notes and References
- Ford. Lester R. Jr.. Johnson. Selmer M.. 1959-05-01. A Tournament Problem. The American Mathematical Monthly. 66. 5. 387–389. 10.1080/00029890.1959.11989306. 0002-9890.
- Book: Introduction to algorithms. 2009. MIT Press. Cormen, Thomas H.. 978-0-262-27083-0. Third . Cambridge, Mass.. 676697295.
- Rabin. Michael O.. 1972-12-01. Proving simultaneous positivity of linear forms. Journal of Computer and System Sciences. en. 6. 6. 639–650. 10.1016/S0022-0000(72)80034-5. 0022-0000. free.
- Reingold. Edward M.. 1972-10-01. On the Optimality of Some Set Algorithms. Journal of the ACM. 19. 4. 649–659. 10.1145/321724.321730. 18605212. 0004-5411. free.
- Book: Preparata, Franco P.. Computational geometry : an introduction. 1985. Springer-Verlag. Shamos, Michael Ian.. 0-387-96131-3. New York. 11970840.
- Book: Ben-Or, Michael. Proceedings of the fifteenth annual ACM symposium on Theory of computing - STOC '83 . Lower bounds for algebraic computation trees . 1983-12-01. STOC '83. New York, NY, USA. Association for Computing Machinery. 80–86. 10.1145/800061.808735. 978-0-89791-099-6. 1499957. free.
- Dobkin. David. Lipton. Richard J.. 1976-06-01. Multidimensional Searching Problems. SIAM Journal on Computing. 5. 2. 181–186. 10.1137/0205015. 0097-5397.
- Michael Steele. J. Yao. Andrew C. 1982-03-01. Lower bounds for algebraic decision trees. Journal of Algorithms. en. 3. 1. 1–8. 10.1016/0196-6774(82)90002-5. 0196-6774.
- Beals . R. . Buhrman, H. . Cleve, R. . Mosca, M. . de Wolf, R. . 2001 . Quantum lower bounds by polynomials . Journal of the ACM . 48 . 4 . 778–797 . 10.1145/502090.502097. quant-ph/9802049 . 1078168 .
- Blum . M. . Impagliazzo, R. . Generic oracles and oracle classes . 1987 . Proceedings of 18th IEEE FOCS . 118–126.
- Tardos . G. . Query complexity, or why is it difficult to separate NPA ∩ coNPA from PA by random oracles A? . Combinatorica . 1989 . 385–392. 9 . 4 . 10.1007/BF02125350. 45372592 .
- Nisan . N. . Noam Nisan . CREW PRAMs and decision trees . 1989 . Proceedings of 21st ACM STOC . 327–335.
- Kulkarni, R. and Tal, A. On Fractional Block Sensitivity. Electronic Colloquium on Computational Complexity (ECCC). Vol. 20. 2013.
- Ambainis. Andris. Balodis. Kaspars. Belovs. Aleksandrs. Lee. Troy. Santha. Miklos. Smotrovs. Juris. 2017-09-04. Separations in Query Complexity Based on Pointer Functions. Journal of the ACM. 64. 5. 32:1–32:24. 10.1145/3106234. 1506.04719. 10214557. 0004-5411.
- Aaronson. Scott. Ben-David. Shalev. Kothari. Robin. Rao. Shravas. Tal. Avishay. 2020-10-23. Degree vs. Approximate Degree and Quantum Implications of Huang's Sensitivity Theorem. quant-ph. 2010.12629.
- Midrijanis . Gatis . 2004 . quant-ph/0403168 . cs2. Exact quantum query complexity for total Boolean functions .
- Midrijanis . Gatis . 2005 . quant-ph/0501142 . cs2. On Randomized and Quantum Query Complexities .
- Huang. Hao. 2019. Induced subgraphs of hypercubes and a proof of the Sensitivity Conjecture. Annals of Mathematics. 190. 3. 949–955. 10.4007/annals.2019.190.3.6. 10.4007/annals.2019.190.3.6. 1907.00847. 195767594. 0003-486X.
- Web site: Klarreich. Erica. Decades-Old Computer Science Conjecture Solved in Two Pages. 2019-07-26. Quanta Magazine.