In game theory, Deadlock is a game where the action that is mutually most beneficial is also dominant. This provides a contrast to the Prisoner's Dilemma where the mutually most beneficial action is dominated. This makes Deadlock of rather less interest, since there is no conflict between self-interest and mutual benefit.On the other hand, deadlock game can also impact the economic behaviour and changes to equilibrium outcome in society.
C | D | ||
---|---|---|---|
c | a, b | c, d | |
d | e, f | g, h |
Any game that satisfies the following two conditions constitutes a Deadlock game: (1) e>g>a>c and (2) d>h>b>f. These conditions require that d and D be dominant. (d, D) be of mutual benefit, and that one prefer one's opponent play c rather than d.
Like the Prisoner's Dilemma, this game has one unique Nash equilibrium: (d, D).
C | D | ||
---|---|---|---|
c | 1, 1 | 0, 3 | |
d | 3, 0 | 2, 2 |
Even though deadlock game can satisfy group and individual benefit at mean time, but it can be influenced by dynamic one-side-offer bargaining deadlock model.[1] As a result, deadlock negotiation may happen for buyers. To deal with deadlock negotiation, three types of strategies are founded to break through deadlock and buyer's negotiation. Firstly, using power move to put a price on the status quo to create a win-win situation. Secondly, process move is used for overpowering the deadlock negotiation. Lastly, appreciative moves can help buyer to satisfy their own perspectives and lead to successful cooperation.