De Rham–Weil theorem explained
In algebraic topology, the De Rham–Weil theorem allows computation of sheaf cohomology using an acyclic resolution of the sheaf in question.
Let
be a
sheaf on a
topological space
and
a resolution of
by acyclic sheaves. Then
Hq(X,lF)\congHq(lF\bullet(X)),
where
denotes the
-th
sheaf cohomology group of
with coefficients in
The De Rham–Weil theorem follows from the more general fact that derived functors may be computed using acyclic resolutions instead of simply injective resolutions.
See also
References
- Book: Sur l'analysis situs des variétés à n dimensions. Thèses de l'entre-deux-guerres . 1931. 129 . De Rham . Georges. Georges de Rham .
- 10.1016/0040-9383(67)90002-X. On de Rham's theorem . 1967 . Samelson . Hans. Hans Samelson . Topology . 6 . 4 . 427–432 . free .
- 10.1007/BF02564296. Sur les théorèmes de de Rham . 1952 . Weil . André . André Weil. Commentarii Mathematici Helvetici . 26 . 119–145 . 124799328 .