Dark oxygen explained

Dark oxygen production refers to the generation of molecular oxygen (O2) through processes that do not involve light-dependent oxygenic photosynthesis. The name therefore uses a different sense of 'dark' than that used in the phrase "biological dark matter" (for example) which indicates obscurity to scientific assessment rather than the photometric meaning. While the majority of Earth's oxygen is produced by plants and photosynthetically active microorganisms via photosynthesis, dark oxygen production occurs via a variety of abiotic and biotic processes and may support aerobic metabolism in dark, anoxic environments.

Abiotic production

Abiotic production of dark oxygen can occur through several mechanisms, such as:

In addition to direct O2 formation, these processes often produce reactive oxygen species (ROS), such as hydroxyl radicals (OH), superoxide (O2•-), and hydrogen peroxide (H2O2). These ROS can be converted into O2 and water either biotically, through enzymes like superoxide dismutase and catalase, or abiotically, via reactions with ferrous iron and other reduced metals.[5] [6]

Biotic production

Biotic production of dark oxygen is performed by microorganisms through distinct microbial processes, including:

These processes enable microbial communities to sustain aerobic metabolism in environments that lack oxygen.

Experimental evidence

Recent studies have provided evidence for dark oxygen production in various geological and subsurface environments:

Implications

Despite its diverse pathways, dark oxygen production has traditionally been considered negligible in Earth's systems. Recent evidence suggests that O2 is produced and consumed in dark, apparently anoxic environments on a much larger scale than previously thought, with implications for global biogeochemical cycles.[19] [20] It could also prove to be a possible way to support life in water on other planets, which opens up scientists to a new study and giving further evidence that we may not be alone in the universe.

Notes and References

  1. Das . Soumya . 2013 . Critical Review of Water Radiolysis Processes, Dissociation Products, and Possible Impacts on the Local Environment: A Geochemist . Australian Journal of Chemistry . en . 66 . 5 . 522 . 10.1071/CH13012 . 0004-9425.
  2. He . Hongping . Wu . Xiao . Xian . Haiyang . Zhu . Jianxi . Yang . Yiping . Lv . Ying . Li . Yiliang . Konhauser . Kurt O. . 2021-11-16 . An abiotic source of Archean hydrogen peroxide and oxygen that pre-dates oxygenic photosynthesis . Nature Communications . en . 12 . 1 . 6611 . 10.1038/s41467-021-26916-2 . 2041-1723 . 8595356 . 34785682. 2021NatCo..12.6611H .
  3. He . Hongping . Wu . Xiao . Zhu . Jianxi . Lin . Mang . Lv . Ying . Xian . Haiyang . Yang . Yiping . Lin . Xiaoju . Li . Shan . Li . Yiliang . Teng . H. Henry . Thiemens . Mark H. . 2023-03-28 . A mineral-based origin of Earth's initial hydrogen peroxide and molecular oxygen . Proceedings of the National Academy of Sciences . en . 120 . 13 . e2221984120 . 10.1073/pnas.2221984120 . 0027-8424 . 10068795 . 36940327. 2023PNAS..12021984H .
  4. Stone . Jordan . Edgar . John O. . Gould . Jamie A. . Telling . Jon . 2022-08-08 . Tectonically-driven oxidant production in the hot biosphere . Nature Communications . en . 13 . 1 . 4529 . 10.1038/s41467-022-32129-y . 2041-1723 . 9360021 . 35941147. 2022NatCo..13.4529S .
  5. Sutherland . Kevin M. . Hemingway . Jordon D. . Johnston . David T. . May 2022 . The influence of reactive oxygen species on "respiration" isotope effects . Geochimica et Cosmochimica Acta . en . 324 . 86–101 . 10.1016/j.gca.2022.02.033. 2022GeCoA.324...86S .
  6. Xu . Jie . Sahai . Nita . Eggleston . Carrick M. . Schoonen . Martin A.A. . February 2013 . Reactive oxygen species at the oxide/water interface: Formation mechanisms and implications for prebiotic chemistry and the origin of life . Earth and Planetary Science Letters . en . 363 . 156–167 . 10.1016/j.epsl.2012.12.008. 2013E&PSL.363..156X .
  7. Xu . Jianlin . Logan . Bruce E. . August 2003 . Measurement of chlorite dismutase activities in perchlorate respiring bacteria . Journal of Microbiological Methods . en . 54 . 2 . 239–247 . 10.1016/S0167-7012(03)00058-7. 12782379 .
  8. Ettwig . Katharina F. . Speth . Daan R. . Reimann . Joachim . Wu . Ming L. . Jetten . Mike S. M. . Keltjens . Jan T. . 2012 . Bacterial oxygen production in the dark . Frontiers in Microbiology . 3 . 273 . 10.3389/fmicb.2012.00273 . free . 1664-302X . 3413370 . 22891064.
  9. Kraft . Beate . Jehmlich . Nico . Larsen . Morten . Bristow . Laura A. . Könneke . Martin . Thamdrup . Bo . Canfield . Donald E. . 2022-01-07 . Oxygen and nitrogen production by an ammonia-oxidizing archaeon . Science . en . 375 . 6576 . 97–100 . 10.1126/science.abe6733 . 34990242 . 2022Sci...375...97K . 0036-8075.
  10. Murali . Ranjani . Pace . Laura A. . Sanford . Robert A. . Ward . L. M. . Lynes . Mackenzie M. . Hatzenpichler . Roland . Lingappa . Usha F. . Fischer . Woodward W. . Gennis . Robert B. . Hemp . James . 2024-06-25 . Diversity and evolution of nitric oxide reduction in bacteria and archaea . Proceedings of the National Academy of Sciences . en . 121 . 26 . e2316422121 . 10.1073/pnas.2316422121 . 0027-8424 . 11214002 . 38900790. December 20, 2024 . 2024PNAS..12116422M .
  11. Dershwitz . Philip . Bandow . Nathan L. . Yang . Junwon . Semrau . Jeremy D. . McEllistrem . Marcus T. . Heinze . Rafael A. . Fonseca . Matheus . Ledesma . Joshua C. . Jennett . Jacob R. . DiSpirito . Ana M. . Athwal . Navjot S. . Hargrove . Mark S. . Bobik . Thomas A. . Zischka . Hans . DiSpirito . Alan A. . 2021-06-25 . Parales . Rebecca E. . Oxygen Generation via Water Splitting by a Novel Biogenic Metal Ion-Binding Compound . Applied and Environmental Microbiology . en . 87 . 14 . e0028621 . 10.1128/AEM.00286-21 . 0099-2240 . 8231713 . 33962982. 2021ApEnM..87E.286D .
  12. Ruff . S. Emil . Humez . Pauline . de Angelis . Isabella Hrabe . Diao . Muhe . Nightingale . Michael . Cho . Sara . Connors . Liam . Kuloyo . Olukayode O. . Seltzer . Alan . Bowman . Samuel . Wankel . Scott D. . McClain . Cynthia N. . Mayer . Bernhard . Strous . Marc . 2023-06-13 . Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems . Nature Communications . en . 14 . 1 . 3194 . 10.1038/s41467-023-38523-4 . 2041-1723 . 10264387 . 37311764. 2023NatCo..14.3194R .
  13. Sweetman . Andrew K. . Smith . Alycia J. . de Jonge . Danielle S. W. . Hahn . Tobias . Schroedl . Peter . Silverstein . Michael . Andrade . Claire . Edwards . R. Lawrence . Lough . Alastair J. M. . Woulds . Clare . Homoky . William B. . Koschinsky . Andrea . Fuchs . Sebastian . Kuhn . Thomas . Geiger . Franz . August 2024 . Evidence of dark oxygen production at the abyssal seafloor . Nature Geoscience . en . 17 . 8 . 737–739 . 10.1038/s41561-024-01480-8 . 1752-0894 . free.
  14. Smith . K. L. . Laver . M. B. . Brown . N. O. . 1983 . Sediment community oxygen consumption and nutrient exchange in the central and eastern North Pacific1 . Limnology and Oceanography . en . 28 . 5 . 882–898 . 10.4319/lo.1983.28.5.0882 . 0024-3590.
  15. Khripounoff . Alexis . Caprais . Jean-Claude . Crassous . Philippe . Etoubleau . Joël . 2006 . Geochemical and biological recovery of the disturbed seafloor in polymetallic nodule fields of the Clipperton-Clarion Fracture Zone (CCFZ) at 5,000-m depth . Limnology and Oceanography . en . 51 . 5 . 2033–2041 . 10.4319/lo.2006.51.5.2033.
  16. Vonnahme . T. R. . Molari . M. . Janssen . F. . Wenzhöfer . F. . Haeckel . M. . Titschack . J. . Boetius . A. . 2020 . Effects of a deep-sea mining experiment on seafloor microbial communities and functions after 26 years . Science Advances . en . 6 . 18 . 10.1126/sciadv.aaz5922 . 2375-2548 . 7190355 . 32426478.
  17. Stratmann . Tanja . Voorsmit . Ilja . Gebruk . Andrey . Brown . Alastair . Purser . Autun . Marcon . Yann . Sweetman . Andrew K. . Jones . Daniel O. B. . van Oevelen . Dick . 2018 . Recovery of Holothuroidea population density, community composition, and respiration activity after a deep‐sea disturbance experiment . Limnology and Oceanography . en . 63 . 5 . 2140–2153 . 10.1002/lno.10929 . 0024-3590.
  18. An . Sung-Uk . Baek . Ju-Wook . Kim . Sung-Han . Baek . Hyun-Min . Lee . Jae Seong . Kim . Kyung-Tae . Kim . Kyeong Hong . Hyeong . Kiseong . Chi . Sang-Bum . Park . Chan Hong . 2024 . Regional differences in sediment oxygen uptake rates in polymetallic nodule and co-rich polymetallic crust mining areas of the Pacific Ocean . Deep Sea Research Part I: Oceanographic Research Papers . 207 . 104295 . 10.1016/j.dsr.2024.104295 . 0967-0637.
  19. Sweetman . Andrew K. . Smith . Alycia J. . de Jonge . Danielle S. W. . Hahn . Tobias . Schroedl . Peter . Silverstein . Michael . Andrade . Claire . Edwards . R. Lawrence . Lough . Alastair J. M. . Woulds . Clare . Homoky . William B. . Koschinsky . Andrea . Fuchs . Sebastian . Kuhn . Thomas . Geiger . Franz . August 2024 . Evidence of dark oxygen production at the abyssal seafloor . Nature Geoscience . en . 17 . 8 . 737–739 . 10.1038/s41561-024-01480-8 . 1752-0894. free .
  20. Ruff . S. Emil . Humez . Pauline . de Angelis . Isabella Hrabe . Diao . Muhe . Nightingale . Michael . Cho . Sara . Connors . Liam . Kuloyo . Olukayode O. . Seltzer . Alan . Bowman . Samuel . Wankel . Scott D. . McClain . Cynthia N. . Mayer . Bernhard . Strous . Marc . 2023-06-13 . Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems . Nature Communications . en . 14 . 1 . 10.1038/s41467-023-38523-4 . 2041-1723 . 10264387 . 37311764.